正方體ABCD-A1B1C1D1中,P、M為空間任意兩點(diǎn),且
PM
=
PB1
+6
AA1
+7
BA
+4
A1D1
,則M點(diǎn)一定在平面
 
內(nèi).
考點(diǎn):棱柱的結(jié)構(gòu)特征,平面向量的基本定理及其意義
專題:空間位置關(guān)系與距離
分析:以A點(diǎn)為原點(diǎn)建立坐標(biāo)系,設(shè)正方體邊長(zhǎng)為1,利用向量法能求出M點(diǎn)一定在平面A1BCD1內(nèi).
解答: 解:以A點(diǎn)為原點(diǎn)建立坐標(biāo)系,
設(shè)正方體邊長(zhǎng)為1,
則BA=(-1,0,0),AA1=(0,0,1),
A1D1
=(0,1,0),
PM
=
PB1
+6
AA1
+7
BA
+4
A1D1
=(-7,4,6),
所以M=(-7,4,6)+(1,0,1)=(-6,4,7),
而平面A1BCD1的方程為x+z-1=0,
把點(diǎn)M的坐標(biāo)代入滿足條件,
所以M點(diǎn)一定在平面A1BCD1內(nèi).
點(diǎn)評(píng):本題考查點(diǎn)的位置的確定,是基礎(chǔ)題,解題時(shí)要注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)滿足
a
=(x2,y),
b
=(x-
1
x
,-1)
,且
a
b
=-1
.如果存在正項(xiàng)數(shù)列{an}滿足:a1=
1
2
,
n
i=1
f(ai)-n=
n
i=1
ai3-n2an(n∈N*)

(1)求數(shù)列{an}的通項(xiàng);
(2)證明:
n
i=1
ai
i
<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為△ABC所在平面外一點(diǎn),O為P在平面ABC上的射影.(1)若PA=PB=PC,則O點(diǎn)是△ABC的
 
心;(2)若PA⊥BC,PB⊥AC,則點(diǎn)O是△ABC的
 
心;(3)若PA,PB,PC兩兩互相垂直,則O點(diǎn)是△ABC的
 
心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=-
1
3
x3+
1
2
x2+2ax
,若f(x)在(
2
3
,+∞)上存在單調(diào)遞增區(qū)間,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平行六面體ABCD-A1B1C1D1.AC1分別與平面A1BD、平面CB1D1交于E,F(xiàn)兩點(diǎn).給出以下命題:
①平面A1BD∥平面CB1D1
②若∠A1AD=∠A1AB=∠DAB,AD=AB=AA1,則直線A1D與CD1所成角為
π
3
;
③點(diǎn)E,F(xiàn)為線段AC1的兩個(gè)三等分點(diǎn);
④E為△A1BD的內(nèi)心.
其中真命題的序號(hào)是
 
(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax(x>0)
(2-a)x+
2
3
a(x≤0)
在R上為增函數(shù),則a的取值范圍是
 
(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是拋物線y2=4x上的動(dòng)點(diǎn),過(guò)P作拋物線準(zhǔn)線的垂線,垂足為M、N是圓(x-2)2+(y-5)2=1上的動(dòng)點(diǎn),則|PM|+|PN|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求得8251與6105的最大公約數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的單調(diào)函數(shù),且對(duì)于任意x1、x2∈R都有f(x1+x2)=f(x1)•f(x2),若g(x)=log2f(x),則g(x)的圖象可以是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案