11.函數(shù)$f(x)=\frac{1}{{\sqrt{1-{2^x}}}}$的定義域是( 。
A.{x|x≥0}B.{x|x≤0}C.{x|x>0}D.{x|x<0}

分析 由分母中根式內(nèi)部的代數(shù)式大于0,然后求解指數(shù)不等式得答案.

解答 解:由1-2x>0,得2x<1,即x<0.
∴函數(shù)$f(x)=\frac{1}{{\sqrt{1-{2^x}}}}$的定義域是{x|x<0}.
故選:D.

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=x2+ax+b,(a,b∈R).
(Ⅰ)當(dāng)b=$\frac{{a}^{2}}{4}$+1時,求函數(shù)f(x)在[-1,1]上的最小值g(a)的表達式;
(Ⅱ)若b=a+1且函數(shù)f(x)在[-1,1]上存在兩個不同零點,試求實數(shù)a的取值范圍.
(Ⅲ)若b=a+1且函數(shù)f(x)在[-1,1]上存在一個零點,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}滿足a2=2,a5=8
(1)求數(shù)列{an}的通項公式;
(2)設(shè)各項均為正數(shù)的等比數(shù)列bn}的前n項和為Tn若b3=a3,T2=3,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,側(cè)面PAD是邊長為2的正三角形,平面ABCD⊥平面PAD,M是PC的中點,O是AD的中點,則直線BM與平面PCO所成角的正弦值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若等差數(shù)列{an}中,${a_3}+a_4^{\;}+{a_5}=2$,a4+a5+a6=5,則a8+a9+a10=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)y=loga(x+4)-1(a>0,且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則$\frac{1}{m}+\frac{3}{n}$的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)A={(x,y)|y=-x+1},B={(x,y)|y=x-1},則A∩B=( 。
A.{1,0}B.{(1,0)}C.{x=1,y=0}D.(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=xlnx-$\frac{k}{x}$(k<0)的圖象與x軸交于不同的兩點A(x1,0),B(x2,0).求證:f′($\frac{{x}_{1}+{x}_{2}}{2}$)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在R上定義運算?:x?y=x(1-y),要使不等式(x-a)?(x+a)>1成立,則實數(shù)a的取值范圍是( 。
A.-1<a<1B.0<a<2C.$a<-\frac{1}{2}$或$a>\frac{3}{2}$D.$-\frac{1}{2}<a<\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案