分析 以O為原點,在平面ABCD內(nèi)過O作AB的平行線為x軸,以OD為y軸,以OP為z軸,建立空間直角坐標系,利用向量法能求出直線BM與平面PCO所成角的正弦值.
解答 解:以O為原點,在平面ABCD內(nèi)過O作AB的平行線為x軸,以OD為y軸,以OP為z軸,
建立空間直角坐標系,
B(2,-1,0),C(2,1,0),P(0,0,$\sqrt{3}$),
M(1,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),O(0,0,0),
$\overrightarrow{BM}$=(-1,$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{OP}$=(0,0,$\sqrt{3}$),$\overrightarrow{OC}$=(2,1,0),
設平面PCO的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{OP}=\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{OC}=2x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-2,0),
設直線BM與平面PCO所成角為θ,
則sinθ=|cos<$\overrightarrow{BM},\overrightarrow{n}$>|=|$\frac{\overrightarrow{BM}•\overrightarrow{n}}{|\overrightarrow{BM}|•|\overrightarrow{n}|}$|=|$\frac{-1-3}{2\sqrt{5}}$|=$\frac{2\sqrt{5}}{5}$.
∴直線BM與平面PCO所成角的正弦值為$\frac{2\sqrt{5}}{5}$.
故答案為:$\frac{2\sqrt{5}}{5}$.
點評 本題考查線面角的正弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2477 | B. | 2427 | C. | 2427.5 | D. | 2477.5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$ | B. | $\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$ | C. | $\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{c}$ | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\stackrel{c}{→}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∉R,使得$x_0^2>4$ | B. | ?x0∉R,使得$x_0^2≤4$ | ||
C. | ?x∈R,x2>4 | D. | ?x∈R,x2≤4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x≥0} | B. | {x|x≤0} | C. | {x|x>0} | D. | {x|x<0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (6,7) | B. | (7,8) | C. | (8,9) | D. | (9,10) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com