A. | (-∞,2) | B. | $(-∞,\frac{1}{2}]$ | C. | $[\frac{1}{2},2)$ | D. | (0,2) |
分析 由題意利用函數(shù)的單調(diào)性的性質(zhì),可得$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≤a-2+1}\end{array}\right.$,由此求得a的范圍.
解答 解:函數(shù)$f(x)=\left\{{\begin{array}{l}{(a-2)x+1,x<1}\\{{{(\frac{1}{2})}^x}-1,x≥1}\end{array}}\right.$是R上的單調(diào)遞減函數(shù),∴$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≤a-2+1}\end{array}\right.$,
求得$\frac{1}{2}$≤a<2,則實數(shù)a的范圍是[$\frac{1}{2}$,2),
故選:C.
點評 本題主要函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{32π}{3}$ | B. | $\frac{4π}{3}$ | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{16}{9}$ | D. | $\frac{26}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com