12.若函數(shù)f(x)是冪函數(shù),且滿足$\frac{f(4)}{f(2)}$=3,則f($\frac{1}{2}$)的值為( 。
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

分析 設(shè)f(x)=xα(α為常數(shù)),由滿足$\frac{f(4)}{f(2)}$=3,可得α=log23.$f(x)={x}^{lo{g}_{2}3}$.代入即可得出.

解答 解:設(shè)f(x)=xα(α為常數(shù)),
∵滿足$\frac{f(4)}{f(2)}$=3,∴$\frac{{4}^{α}}{{2}^{α}}$=3,∴α=log23.
∴$f(x)={x}^{lo{g}_{2}3}$.
則f($\frac{1}{2}$)=${2}^{-lo{g}_{2}3}$=$\frac{1}{3}$.
故選:D.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的運(yùn)算法則、冪函數(shù)的定義,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.執(zhí)行程序框圖,若輸入的a,b,k分別為1,2,3,則輸出的M=$\frac{15}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列4個(gè)命題是真命題的是( 。
①“若x2+y2=0,則x、y均為零”的逆命題
②“相似三角形的面積相等”的否命題
③“若A∩B=A,則A⊆B”的逆否命題
④“末位數(shù)字不是零的數(shù)可被3整除”的逆否命題.
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.與向量$\overrightarrow{a}$=(3,4)垂直且模長(zhǎng)為2的向量為($\frac{8}{5}$,-$\frac{6}{5}$)或(-$\frac{8}{5}$,$\frac{6}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中能用二分法求零點(diǎn)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在直角坐標(biāo)系中,已知M(2,1)和直線L:x-y=0,試在直線L上找一點(diǎn)P,在X軸上找一點(diǎn)Q,使三角形MPQ的周長(zhǎng)最小,最小值為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正項(xiàng)數(shù)列{an},{bn}滿足:a1=3,a2=6,{bn}是等差數(shù)列,且對(duì)任意正整數(shù)n,都有bn,$\sqrt{{a}_{n}}$,bn+1成等比數(shù)列.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2b•4x-2x-1
(Ⅰ)當(dāng)b=$\frac{1}{2}$時(shí),利用定義證明函數(shù)g(x)=$\frac{f(x)}{{2}^{x}}$在(-∞,+∞)上是增函數(shù);
(Ⅱ)當(dāng)b=$\frac{1}{2}$時(shí),若f(x)-m≥0對(duì)于任意x∈R恒成立,求m的取值范圍;
(Ⅲ)若f(x)有零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一個(gè)有蓋的正方體鑄鐵箱,每條外棱的長(zhǎng)為26厘米,壁厚為0.15厘米,已知鑄鐵的比重為7.2克/立方厘米,求鐵箱的重量.

查看答案和解析>>

同步練習(xí)冊(cè)答案