20.已知集合A={1,2}與B={x|x2+px+q=0},且A∪B=B,求實(shí)數(shù)p和q的值.

分析 由已知可得A=B={1,2},再由韋達(dá)定理,可得實(shí)數(shù)p和q的值.

解答 解:∵集合A={1,2}與B={x|x2+px+q=0},且A∪B=B,
∴A=B={1,2},
∴1+2=3=-p,1×2=2=q,
故p=-3,q=2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合的包含判斷及應(yīng)用,韋達(dá)定理,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直線x+$\sqrt{3}$y-3=0與x=2之間的夾角是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.f(x)=log2(4x)•log2(2x),0.25≤x≤4,求f(x)的最值,并寫(xiě)出最值時(shí)對(duì)應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.畫(huà)出以二元一次不等式2x-y+1≥0的解為坐標(biāo)的點(diǎn)在平面直角坐標(biāo)系中的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+Sn=$\frac{1}{2}$(n2+3n),數(shù)列{bn}滿足bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,M為正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}的前2015項(xiàng)的和T2015≥M,求M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求f(x)=$\frac{1}{x-2}$+x+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知三個(gè)數(shù)a-1,a+1,a+5成等比數(shù)列,其倒數(shù)重新排列后恰好為遞增的等比數(shù)列{an}的前三項(xiàng),則能使不等式a1+a2+…+an≤$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$成立的自然數(shù)n的最大值為( 。
A.5B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合A={x∈N|$\frac{x-2}{x}$≤0},B={x∈Z|$\sqrt{x}$≤2},則滿足條件A⊆C?B的集合C的個(gè)數(shù)為(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量$\overrightarrow{a}$=(2,1),A(1,0),B(cos θ,t).
(1)若向量$\overrightarrow{a}$⊥$\overrightarrow{AB}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量$\overrightarrow{OB}$的坐標(biāo);
(2)若$\overrightarrow{a}$⊥$\overrightarrow{AB}$,求y=cos 2θ-cos θ+t2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案