設(shè)拋物線的準(zhǔn)線為為拋物線上的點(diǎn),,垂足為,若得面積與的面積之比為,則點(diǎn)坐標(biāo)是                 
(2, )或(2,- )
解:△PQF與△POF 的高相等,都等于P的縱坐標(biāo)的絕對(duì)值,因此,△PQF的面積與△POF的面積之比=PQ:FO=3:1,該拋物線的焦點(diǎn)F的坐標(biāo)為(1,0),故:FO=1,則PQ=3,又該拋物線的準(zhǔn)線l為x=-1,P距離準(zhǔn)線的距離為3,則推知P的橫坐標(biāo)則為2代入拋物線方程,即可求出P的縱坐標(biāo),為 或- .P點(diǎn)坐標(biāo)是(2, )或(2,- ).
故答案為:(2, )或(2,- )
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線y2=4x的焦點(diǎn)是F準(zhǔn)線是l,則過(guò)點(diǎn)F和點(diǎn)M(4,4)且與準(zhǔn)線l相切的圓有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P,Q為拋物線上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,2,過(guò)P、Q分別作拋物線的切線,兩切線交于A,則點(diǎn)A的縱坐標(biāo)為_(kāi)_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線上與焦點(diǎn)的距離等于5的點(diǎn)的橫坐標(biāo)是 (     )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)拋物線焦點(diǎn)的直線與拋物線交于兩點(diǎn),,且AB中點(diǎn)的縱坐標(biāo)為,則的值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知:曲線上任意一點(diǎn)到點(diǎn)的距離與到直線的距離相等.
(1)求曲線的方程;
(2)如果直線交曲線、兩點(diǎn),是否存在實(shí)數(shù),使得以為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線上一點(diǎn), ,為垂足.如果直線的斜率為,那么
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=的焦點(diǎn)坐標(biāo)是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線的焦點(diǎn)F的直線AB交拋物線于A,B兩點(diǎn),弦AB的中點(diǎn)為M,過(guò)M作AB的垂直平分線交x軸于N,
(1)求證:          
(2)過(guò)A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案