若函數(shù)f(x)=loga(2x+1)(a>0,且a≠1)在區(qū)間(-
1
2
,0)內(nèi)恒有f(x)>0,則f(x)的單調(diào)減區(qū)間是( 。
A、(-∞,-
1
2
B、(-
1
2
,+∞)
C、(-∞,0)
D、(0,+∞)
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件f(x)>0判斷出a的范圍,再根據(jù)復(fù)合函數(shù)“同增異減”原則求f(x)單調(diào)區(qū)間.
解答: 解:函數(shù)f(x)=loga(2x+1)的定義域?yàn)椋?
1
2
,+∞),
當(dāng)x∈(-
1
2
,0)時(shí),2x+1∈(0,1),∴0<a<1,
∵函數(shù)f(x)=loga(2x+1)(a>0,a≠1)由f(x)=logat和t=x+1復(fù)合而成,
0<a<1時(shí),f(x)=logat在(0,+∞)上是減函數(shù),而t=x+1為增函數(shù),
∴f(x)在其定義域內(nèi)單調(diào)遞減,
∵函數(shù)f(x)=loga(2x+1)的定義域?yàn)椋?
1
2
,+∞),
∴f(x)的單調(diào)減區(qū)間是(-
1
2
,+∞).
故選:B.
點(diǎn)評(píng):本題考查復(fù)合函數(shù)的單調(diào)區(qū)間問題,復(fù)合函數(shù)的單調(diào)區(qū)間復(fù)合“同增異減”原則,在解題中勿忘真數(shù)大于0條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2
0
4x-x2
dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標(biāo)方程為ρ=4cosθ,則曲線C上點(diǎn)到直線
x=-1+t
y=2t
(t為參數(shù))距離的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明2n>n2(n∈N*,n≥5)成立時(shí),第二步歸納假設(shè)正確寫法( 。
A、假設(shè)n=k時(shí)命題成立
B、假設(shè)n=k(k∈N*)時(shí)命題成立
C、假設(shè)n=k(n≥5)時(shí)命題成立
D、假設(shè)n=k(n>5)時(shí)命題成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x2-3|x|-35>0的解集為( 。
A、{x|x<-
7
2
或x>5}
B、{x|0<x<
7
2
或x>5}
C、{x|x<5或x>7}
D、{x|x<-5或x>5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
d
ax2+bx+c
(a,b,c,d∈R)
的圖象如圖所示,則a:b:c:d=( 。
A、1:6:5:8
B、1:6:5:(-8)
C、1:(-6):5:8
D、1:(-6):5:(-8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=
1
3
x3+bx2+(b+2)x+3在R上是增函數(shù),則b的取值范圍為( 。
A、(-1,2)
B、[-1,2]
C、(-2,1)
D、[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+a5+2a10=4,則S13的值為(  )
A、13B、26C、8D、162

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與圓x2+y2-4y=0外切,又與x軸相切的圓的圓心軌跡方程是( 。
A、y2=8x
B、y2=8x(x>0)和y=0
C、x2=8y(y>0)
D、x2=8y(y>0)和x=0(y<0)

查看答案和解析>>

同步練習(xí)冊(cè)答案