在△ABC中,已知sinA=sinBcosC,則該三角形的形狀是( 。
A、等邊三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:已知等式左邊變形為sin(B+C),利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),整理后求出cosB=0,確定出B為直角,即可得到三角形為直角三角形.
解答: 解:∵sinA=sin[π-(B+C)]=sin(B+C),
∴sinA=sin(B+C)=sinBcosC+cosBsinC=sinBcosC,即cosBsinC=0,
∵sinC≠0,∴cosB=0,即B=
π
2
,
則該三角形形狀是直角三角形.
故選:B.
點(diǎn)評(píng):此題考查了余弦定理,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式
2-x
+
x+1
<m
對(duì)于任意的x∈[-1,2]恒成立
(Ⅰ)求m的取值范圍;
(Ⅱ)在(Ⅰ)的條件下求函數(shù)f(m)=m+
1
(m-2)2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x-
π
4
)=
3
5
,則sin2x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線:x-y+1=0與圓:(x-1)2+(y+5)2=4的位置關(guān)系是( 。
A、相交但不過圓心B、相切
C、相離D、相交且過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量x服從正態(tài)分布n(3,σ2),且p(2≤x≤4)=0.6826,則p(x>4)等于( 。
A、0.1588
B、0.1587
C、0.1586
D、0.1585

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)且傾斜角為60°的直線與圓:x2+y2-4y=0的位置關(guān)系是( 。
A、相切B、相交
C、相離D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=
1-x2
與直線kx+y+2k+1=0有二個(gè)公共點(diǎn),則k的取值范圍是(  )
A、(0,
4
3
)
B、[1,
4
3
)
C、(-
4
3
,-1)
D、(-
4
3
,-
1
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
(x2+2x+4)
,則f(-2)與f(-3)的大小關(guān)系是(  )
A、f(-2)>f(-3)
B、f(-2)=f(-3)
C、f(-2)<f(-3)
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax-1在(-∞,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案