13.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,則a等于( 。
A.$\frac{{\sqrt{6}-\sqrt{2}}}{2}$B.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$C.$\sqrt{2}+1$D.$3-\sqrt{2}$

分析 利用余弦定理即可求值得解.

解答 解:∵b=$\sqrt{2},c=1,B={45°}$,
∴由余弦定理可得:b2=a2+c2-2accosB,即:2=a2+1-2×$a×1×\frac{\sqrt{2}}{2}$,
∴整理解得:a=$\frac{\sqrt{2}+\sqrt{6}}{2}$或$\frac{\sqrt{2}-\sqrt{6}}{2}$(舍去).
故選:B.

點評 本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列4個命題是真命題的是( 。
①“若x2+y2=0,則x、y均為零”的逆命題
②“相似三角形的面積相等”的否命題
③“若A∩B=A,則A⊆B”的逆否命題
④“末位數(shù)字不是零的數(shù)可被3整除”的逆否命題.
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知正項數(shù)列{an},{bn}滿足:a1=3,a2=6,{bn}是等差數(shù)列,且對任意正整數(shù)n,都有bn,$\sqrt{{a}_{n}}$,bn+1成等比數(shù)列.
(1)求數(shù)列{bn}的通項公式;
(2)求Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=2b•4x-2x-1
(Ⅰ)當b=$\frac{1}{2}$時,利用定義證明函數(shù)g(x)=$\frac{f(x)}{{2}^{x}}$在(-∞,+∞)上是增函數(shù);
(Ⅱ)當b=$\frac{1}{2}$時,若f(x)-m≥0對于任意x∈R恒成立,求m的取值范圍;
(Ⅲ)若f(x)有零點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.不等式-2x2+x+1<0的解集是(  )
A.(-$\frac{1}{2}$,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.不等式$\frac{3-x}{2x-4}$<1的解集為{x|x<2或x>$\frac{7}{3}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.等差數(shù)列{an}中,a1+a7=10,S9=63,則數(shù)列{an}的公差為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.一個有蓋的正方體鑄鐵箱,每條外棱的長為26厘米,壁厚為0.15厘米,已知鑄鐵的比重為7.2克/立方厘米,求鐵箱的重量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{{x}^{2}-4x,x<0}\end{array}\right.$,若f(2a+1)>f(3),則實數(shù)a的取值范圍是( 。
A.(-∞,-2)∪(1,+∞)B.(-∞,-1)∪(-$\frac{1}{3}$,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

同步練習冊答案