10.函數(shù)f(x)=$\frac{{x}^{2}+8}{\sqrt{{x}^{2}+2}}$的最小值為$2\sqrt{6}$.

分析 把已知的函數(shù)式變形,然后利用基本不等式求得最值.

解答 解:f(x)=$\frac{{x}^{2}+8}{\sqrt{{x}^{2}+2}}$=$\frac{{x}^{2}+2+6}{\sqrt{{x}^{2}+2}}$=$\sqrt{{x}^{2}+2}+\frac{6}{\sqrt{{x}^{2}+2}}$$≥2\sqrt{\sqrt{{x}^{2}+2}•\frac{6}{\sqrt{{x}^{2}+2}}}=2\sqrt{6}$,
當(dāng)且僅當(dāng)$\sqrt{{x}^{2}+2}=\frac{6}{\sqrt{{x}^{2}+2}}$,即x=±2時函數(shù)f(x)有最小值.
故答案為:$2\sqrt{6}$.

點(diǎn)評 本題考查了函數(shù)單調(diào)性的性質(zhì),考查了利用基本不等式求最值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,正確的是( 。
A.若|$\overrightarrow{a}$|=0,則$\overrightarrow{a}$=0B.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$
C.若$\overrightarrow{a}$與$\overrightarrow$是平行向量,則|$\overrightarrow{a}$|=|$\overrightarrow$|D.若$\overrightarrow{a}$=$\overrightarrow{0}$,則-$\overrightarrow{a}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知關(guān)于x不等式|2x-a|-|2x+2a-3|<x2-8x+13有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個頂點(diǎn)恰好是拋物線x2=4$\sqrt{3}$y的焦點(diǎn),且離心率為e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),過橢圓C的右焦點(diǎn)作直線l∥AB交橢圓C于M,N兩點(diǎn).試問$\frac{{{{|{AB}|}^2}}}{{|{MN}|}}$是否為定值,若為定值,請求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)A和B分別是兩個等差數(shù)列{an}和{bn}的前n項和,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{7n+35}{n+2}$,則使得$\frac{{a}_{n}}{_{n}}$為整數(shù)的正整數(shù)n的個數(shù)是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)M,N,P分別為AB1,BC1,DD1的中點(diǎn),給出下列結(jié)論:
①M(fèi)N⊥AA1
②直線C1M與平面ABCD所成角的正弦值為$\frac{{\sqrt{5}}}{5}$
③MN⊥BP
④四面體B-DA1C1的體積為$\frac{1}{3}$
則正確結(jié)論的序號為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|x2=2},B={1,$\sqrt{2}$,2},則A∩B=( 。
A.{2}B.{$\sqrt{2}$}C.{-$\sqrt{2}$,1,$\sqrt{2}$,2}D.{1,$\sqrt{2}$,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)為F1、F2,離心率為$\frac{1}{2}$,過點(diǎn)F1的直線l交橢圓于A、B兩點(diǎn),△AF2B的周長為8.
(1)求橢圓方程.
(2)若橢圓的左、右頂點(diǎn)為C、D,四邊形ABCD的面積為$\frac{{24\sqrt{2}}}{7}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若等比數(shù)列{an}的首項a1>0,公比q>0,前n項和為Sn,則$\frac{{S}_{4}}{{a}_{4}}$與$\frac{{S}_{6}}{{a}_{6}}$的大小為<.

查看答案和解析>>

同步練習(xí)冊答案