【題目】將曲線上每個點的橫坐標(biāo)伸長為原來的(縱坐標(biāo)不變),得到的圖象,則下列說法正確的是(

A.的圖象關(guān)于直線對稱

B.上的值域為

C.的圖象關(guān)于點對稱

D.的圖象可由的圖象向右平移個單位長度得到

【答案】BD

【解析】

由三角恒等變換可得,再結(jié)合三角函數(shù)值域的求法、三角函數(shù)圖像的對稱軸、對稱中心的求法逐一判斷即可得解.

解:因為,

所以,

對于選項A,令,解得),即函數(shù)的對稱軸方程為),即選項A錯誤;

對于選項B,因為,所以,即,即上的值域為,即選項B正確;

對于選項C,令,解得,即的圖象關(guān)于點對稱,則的圖象關(guān)于點對稱,故選項C錯誤.

對于D,的圖象向右平移個單位長度,得到的圖象,故選項D正確.

則說法正確的是BD,

故選:BD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中.

(1),證明:當(dāng)時,;

(2)設(shè),且,其中是自然對數(shù)的底數(shù).

①證明恰有兩個零點;

②設(shè)如為的極值點,的零點,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)fx),若ab,c∈Rfa),fb),fc)都是某一三角形的三邊長,則稱fx)為可構(gòu)造三角形函數(shù).以下說法正確的是(

A.fx=1x∈R)不是可構(gòu)造三角形函數(shù)

B.可構(gòu)造三角形函數(shù)一定是單調(diào)函數(shù)

C.fx=可構(gòu)造三角形函數(shù)

D.若定義在R上的函數(shù)fx)的值域是e為自然對數(shù)的底數(shù)),則fx)一定是可構(gòu)造三角形函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

1)若存在極小值,求實數(shù)a的取值范圍;

2)若的極大值為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,且交于點,上任意一點.

1)求證

2)已知二面角的余弦值為,若的中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20141219日,2014年中國數(shù)學(xué)奧林匹克競賽(第30屆全國中學(xué)生數(shù)學(xué)冬令營)在重慶市巴蜀中學(xué)舉行.參加本屆中國數(shù)學(xué)奧林匹克競賽共有來自各省、市(自治區(qū)、直轄市)、香港地區(qū)、澳門地區(qū),以及俄羅斯、新加坡等國的30余支代表隊,共317名選手.競賽為期2天,每天3道題,限時4個半小時完成.部分優(yōu)勝者將參加為國際數(shù)學(xué)奧林匹克競賽而組建的中國國家集訓(xùn)隊.中國數(shù)學(xué)奧林匹克競賽(全國中學(xué)生數(shù)學(xué)冬令營)是在全國高中數(shù)學(xué)聯(lián)賽基礎(chǔ)上進行的一次較高層次的數(shù)學(xué)競賽,該項活動也是中國中學(xué)生級別最高、規(guī)模最大、最有影響的全國性數(shù)學(xué)競賽.2020年第29屆全國中學(xué)生生物學(xué)競賽也將在重慶巴蜀中學(xué)舉行.巴蜀中學(xué)校本選修課“數(shù)學(xué)建!迸d趣小組調(diào)查了2019年參加全國生物競賽的200名學(xué)生(其中男生、女生各100人)的成績,得到這200名學(xué)生成績的中位數(shù)為78.200名學(xué)生成績均在50110之間,且成績在內(nèi)的人數(shù)為30,這200名學(xué)生成績的高于平均數(shù)的男生有62名,女生有38.并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖.

1)求的值;

2)填寫下表,能否有的把握認(rèn)為學(xué)生成績是否高于平均數(shù)與性別有關(guān)系?

男生

女生

總計

成績不高于平均數(shù)

成績高于平均數(shù)

總計

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且此拋物線的準(zhǔn)線被橢圓截得的弦長為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線交橢圓兩點,線段的中點為,直線是線段的垂直平分線,試問直線是否過定點?若是,請求出該定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)內(nèi)角的對邊分別為,若,,,且,試求角和角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗員從這批產(chǎn)品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質(zhì)量指標(biāo)值,由檢測結(jié)果得到如下頻率分布表和頻率分布直方圖.

分組

頻數(shù)

頻率

8

16

0.16

4

0.04

合計

100

1

1)求圖中,的值;

2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費用為5元,每件不合格品的回收處理費用為20.以抽檢樣本重量的頻率分布作為該批零件重量的概率分布.若這批零件共400件,現(xiàn)有兩種銷售方案:

方案一:對剩余零件不再進行檢測,回收處理這100件樣本中的不合格品,余下所有零件均按150/件售出;

方案二:繼續(xù)對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150/件售出,優(yōu)質(zhì)品按200/件售出.

僅從獲得利潤大的角度考慮,該生產(chǎn)商應(yīng)選擇哪種方案?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案