7.已知函數(shù)$f(x)=2+\frac{1}{a}-\frac{1}{{{a^2}x}}$,實(shí)數(shù)a≠0.
(1)設(shè)mn>0,判斷函數(shù)f(x)在區(qū)間[m,n]上的單調(diào)性,并說明理由;
(2)設(shè)n>m>0且a>0時(shí),f(x)的定義域和值域都是[m,n],求n-m的最大值.

分析 (1)分類討論m,n的符號,先下結(jié)論,再證明;
(2)問題轉(zhuǎn)化為方程f(x)=x有兩個(gè)相異的正實(shí)數(shù)根m,n,再由一元二次方程根與系數(shù)關(guān)系和配方法求n-m的最大值.

解答 解:(1)根據(jù)題意,由于mn>0,需分類討論如下:
當(dāng)m>0時(shí),n>0,函數(shù)f(x)在[m,n]上單調(diào)遞增,
當(dāng)m<0時(shí),n<0,函數(shù)f(x)在[m,n]上單調(diào)遞增,
不妨設(shè),0<m≤x1<x2≤n,
則f(x1)-f(x2)=$\frac{1}{a^2}$($\frac{1}{{x}_{2}}$-$\frac{1}{{x}_{1}}$)=$\frac{1}{a^2}$•$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$<0,
所以,f(x1)<f(x2),
因此,f(x)在[m,n]上單調(diào)遞增;
(2)f(x)的定義域和值域都是[m,n],且函數(shù)f(x)遞增,
所以,$\left\{\begin{array}{l}{f(m)=m}\\{f(n)=n}\end{array}\right.$,即方程f(x)=x有兩個(gè)相異的正實(shí)數(shù)根m,n,
因此,2+$\frac{1}{a}$-$\frac{1}{a^2x}$=x,整理得,a2x2-(2a+1)ax+1=0,---①
根據(jù)一元二次方程根與系數(shù)的關(guān)系得,
|m-n|=$\frac{\sqrt{(2a+1)^2a^2-4a^2}}{a^2}$=$\sqrt{-3(\frac{1}{a}-\frac{2}{3})^2+\frac{16}{3}}$,
當(dāng)a=$\frac{3}{2}$時(shí),|m-n|max=$\frac{4\sqrt{3}}{3}$,
經(jīng)檢驗(yàn),當(dāng)a=$\frac{3}{2}$時(shí),方程①有兩相異正實(shí)根,符合題意,
因此,n-m的最大值為$\frac{4\sqrt{3}}{3}$.

點(diǎn)評 本題主要考查了函數(shù)單調(diào)性的判斷和證明,以及一元二次方程根與系數(shù)關(guān)系,二次函數(shù)最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=-x2+mx+1,(x∈R)
①求f(x)在[-1,1]上的最小值.
②對于函數(shù)y=g(x)在定義域內(nèi)給定區(qū)間[a,b],如果存在x0(a<x0<b)滿足$g({x_0})=\frac{g(b)-g(a)}{b-a}$,則稱函數(shù)g(x)是區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)“均值點(diǎn)”.如函數(shù)y=x2是[-1,1]上的平均值函數(shù),0就是它的均值點(diǎn).若函數(shù)f(x)是區(qū)間[-1,1]上的平均值函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)上是增函數(shù),f(2)=0,則x[f(x)-f(-x)]<0的解集為(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,男、女生各抽取多少位才符合抽樣要求?
(2)隨機(jī)抽出8位,他們的物理、化學(xué)分?jǐn)?shù)對應(yīng)如下表:
學(xué)生編號12345678
物理分?jǐn)?shù)x6065707580859095
化學(xué)分?jǐn)?shù)y7277808488909395
根據(jù)上表數(shù)據(jù)用變量y與x的散點(diǎn)圖說明化學(xué)成績y與物理成績x之間是否具有線性相關(guān)性?如果具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)性,請說明理由.
參考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline{y}$-b$\overline{x}$;  參考數(shù)據(jù):$\overline{x}$=77.5,$\overline{y}$=84.875.
$\sum_{i=1}^{8}$(xi-x)2=1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈457,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)≈688.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-2|.
(1)解不等式f(x)+f(x+1)≤2;
(2)若a>0,求證:f(ax)-af(x)≤2f(a+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$.若函數(shù)g(x)=f(x)-m有3個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]是增函數(shù),設(shè)a=f(log47),b=f(log${\;}_{\frac{1}{2}}$3),c=f(0.20.6),則a,b,c的大小關(guān)系是b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=|x+1|+|x-1|,x∈R,不等式f(x)≤2$\sqrt{3}$的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時(shí),證明:$\sqrt{3}$|a+b|≤|ab+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+bx+c在點(diǎn)(e,f(e))處的切線斜率為$\frac{e+1}{e}$,且切線在x,y軸上的截距相等.
(1)求f(x)的表達(dá)式;
(2)若f(x)滿足f(x)≥g(x)恒成立,則稱f(x)是g(x)的一個(gè)“上界函數(shù)”,如果函數(shù)f(x)為g(x)=$\frac{t}{x}$-1nx+x(t為實(shí)數(shù))的一個(gè)“上界函數(shù)”,求證:函數(shù)g(x)的圖象上一定不存在不同的兩點(diǎn)(x1,g(x1)),(x2,g(x2))(其中x1,x2∈(0,+∞)),使得g(x1)=g(x2)成立.

查看答案和解析>>

同步練習(xí)冊答案