已知函數(shù)是奇函數(shù)。
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)在R上的單調(diào)性并用定義法證明;
(3)若函數(shù)的圖像經(jīng)過點(diǎn),這對(duì)任意不等式≤恒成立,求實(shí)數(shù)m的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)()在區(qū)間上有最大值和最小值.設(shè).
(1)求、的值;
(2)若不等式在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)當(dāng)a=-2時(shí),求不等式f(x)<g(x)的解集;
(Ⅱ)設(shè)a>-1,且當(dāng)x∈[,)時(shí),f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)正實(shí)數(shù)滿足.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中,區(qū)間.
(Ⅰ)求的長(zhǎng)度(注:區(qū)間的長(zhǎng)度定義為;
(Ⅱ)給定常數(shù),當(dāng)時(shí),求長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/0/1klih2.png" style="vertical-align:middle;" />,若在上為增函數(shù),則稱 為“一階比增函數(shù)”.
(Ⅰ) 若是“一階比增函數(shù)”,求實(shí)數(shù)的取值范圍;
(Ⅱ) 若是“一階比增函數(shù)”,求證:,;
(Ⅲ)若是“一階比增函數(shù)”,且有零點(diǎn),求證:有解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí)恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
探究函數(shù)f(x)=x+,x∈(0,+∞)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com