相關(guān)習(xí)題
 0  208520  208528  208534  208538  208544  208546  208550  208556  208558  208564  208570  208574  208576  208580  208586  208588  208594  208598  208600  208604  208606  208610  208612  208614  208615  208616  208618  208619  208620  208622  208624  208628  208630  208634  208636  208640  208646  208648  208654  208658  208660  208664  208670  208676  208678  208684  208688  208690  208696  208700  208706  208714  266669 

科目: 來源: 題型:

已知如圖長方體ABCD-A1B1C1D1中,AB=AD=2AA1=4,E是上底面中心,F(xiàn),M為A1B1與CD的中點.
(Ⅰ)寫出C1M與平面EFAD的位置關(guān)系并證明.
(Ⅱ)求證:平面B1BAF⊥平面EFAD.
(Ⅲ)求幾何體B1EF-BDA的表面積.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)和圓O:x2+y2=b2,過橢圓上一點P引圓O的兩條切線,切點分別為A,B.
(1)若離心率為
5
3
,短軸一個端點到右焦點距離為3,求橢圓C的方程;
(2)若橢圓上存在點P,使得∠APB=90°,求橢圓離心率e的取值范圍;
(3)設(shè)直線AB與x軸、y軸分別交于點M,N,求證:
a2
|ON|2
+
b2
|OM|2
為定值.

查看答案和解析>>

科目: 來源: 題型:

已知中心在坐標(biāo)原點,以坐標(biāo)軸為對稱軸的雙曲線C過點Q(2,
3
3
),且Q點在x軸上的射影恰為該雙曲線的焦點F.
(1)求雙曲線C的方程;
(2)過雙曲線C的焦點F作與x軸不垂直的任意直線l交雙曲線C于A,B兩點,線段AB的垂直平分線交x軸于點M,問:
|AB|
|FM|
是否為定值?若為定值,請求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知m∈R,復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i.
(1)實數(shù)m取什么值時,復(fù)數(shù)z為純虛數(shù)?
(2)實數(shù)m取什么值時,復(fù)數(shù)z對應(yīng)的點在直線y=
1
2
x上?

查看答案和解析>>

科目: 來源: 題型:

如圖,在三棱錐P-ABC中,AC=BC,AP=BP,D為AB的中點.
(Ⅰ)求證:AB⊥平面PCD:
(Ⅱ)若PC⊥AC,求證:平面PAC⊥平面ABC.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,且經(jīng)過點(
6
,1),O為坐標(biāo)原點.
(1)求橢圓E的標(biāo)準方程.
(2)圓O是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M點作圓O的兩條切線,切點分別為P,Q,當(dāng)∠PMQ=60°時,試證明點M關(guān)于直線PQ的對稱點在圓O上.

查看答案和解析>>

科目: 來源: 題型:

已知復(fù)數(shù)Z1,Z2在復(fù)平面內(nèi)對應(yīng)的點分別為A(-2,1),B(a,3).
(1)若|Z1-Z2|=
5
,求a的值.
(2)復(fù)數(shù)z=Z1•Z2對應(yīng)的點在二、四象限的角平分線上,求a的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2alnx-x+
1
x
(a∈R,且a≠0);g(x)=-x2-x+2
2
b(b∈R)
(Ⅰ)若f(x)是在定義域上有極值,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=
2
時,若對?x1∈[1,e],總?x2∈[1,e],使得f(x1)<g(x2),求實數(shù)b的取值范圍.(其中e為自然對數(shù)的底數(shù))
(Ⅲ)對?n∈N,且n≥2,證明:ln(n。4<(n-1)(n+2)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a∈R.
(1)當(dāng)a=4時,求函數(shù)f(x)的極值點;
(2)令F(x)=f(x)+(a+2)x,若函數(shù)F(x)在區(qū)間[2,+∞)上單調(diào)遞增,求a的取值范圍;
(3)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時,若
h(x)-g(x)
x-x0
>0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“特殊點”,當(dāng)a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“特殊點”的橫坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖,單位正方形ABCD,在正方形內(nèi)(包括邊界)任取一點M,求:
(1)△AMB面積大于等于
1
4
的概率;
(2)求AM長度不小于1的概率.

查看答案和解析>>

同步練習(xí)冊答案