相關(guān)習(xí)題
 0  210186  210194  210200  210204  210210  210212  210216  210222  210224  210230  210236  210240  210242  210246  210252  210254  210260  210264  210266  210270  210272  210276  210278  210280  210281  210282  210284  210285  210286  210288  210290  210294  210296  210300  210302  210306  210312  210314  210320  210324  210326  210330  210336  210342  210344  210350  210354  210356  210362  210366  210372  210380  266669 

科目: 來源: 題型:

設(shè)a<0,函數(shù)f(x)=
1+x
+
1-x
,g(x)=a
1-x2

(Ⅰ)求函數(shù)y=f2(x)的值域;
(Ⅱ)記函數(shù)h(x)=f(x)+g(x)的最大值為H(a).
(。┣驢(a)的表達(dá)式;
(ⅱ)試求滿足H(a)=H(
1
a
)的所有實(shí)數(shù)a.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an},an=
1
2n(2n-1)
,求Sn

查看答案和解析>>

科目: 來源: 題型:

過原點(diǎn)O作圓C:x2+y2+6x=0的弦OA.
(1)求弦OA中點(diǎn)M的軌跡方程.
(2)延長OA到N,使|OA|=|AN|,求N點(diǎn)的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
x2+2x+a,x<0
lnx,x>0
,其中a是實(shí)數(shù).設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點(diǎn),且x1<x2
(1)指出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象在點(diǎn)A,B處的切線重合,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

正三棱柱ABC-A1B1C1中底面邊長為a,側(cè)棱長為
2
a,求AC1與側(cè)面ABB1A1所成的角.

查看答案和解析>>

科目: 來源: 題型:

河南省高中進(jìn)行新課程改革已經(jīng)四年,為了了解教師對(duì)課程教學(xué)模式的使用情況,某一教育機(jī)構(gòu)對(duì)某學(xué)校教師對(duì)于新課程教學(xué)模式的使用情況進(jìn)行了問卷調(diào)查,共調(diào)查了50人,其中老教師20名,青年教師30名,老教師對(duì)新課程教學(xué)模式贊同的有10人,不贊同的10人;青年教師對(duì)新課程教學(xué)模式贊同的有26人,不贊同的有4人.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表;
(Ⅱ)判斷是否有99%的把握說明對(duì)新課程教學(xué)模式的贊同情況與年齡有關(guān)系.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,an-1+1=2an(n≥2,n∈N).
(1)證明數(shù)列{an-1}是等比數(shù)列,并求an;
(2)若數(shù)列{bn}滿足:2b1+22b2+…2nbn=n•2n,求數(shù)列{bn}的通項(xiàng)公式;
(3)令cn=-2an•bn+(n+1)(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(1)求證:PB∥平面EFG;
(2)求異面直線EG與BD所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)m,n∈N,f(x)=(1+2x)m+(1+x)n
(1)當(dāng)m=n=2014時(shí),若f(x)的展開式可表示為f(x)=a0+a1x+a2x2+…+a2014x2014,求a0-a1+a2-…-a2014;
(2)若f(x)展開式中x的系數(shù)是20,則當(dāng)m,n取何值時(shí),x2系數(shù)最小,最小為多少?

查看答案和解析>>

科目: 來源: 題型:

化簡(jiǎn):
sin(kπ-α)•cos[(k-1)π-α]
sin[(k+1)π+α]•cos(kπ+α)
(k∈Z).

查看答案和解析>>

同步練習(xí)冊(cè)答案