相關(guān)習(xí)題
 0  210637  210645  210651  210655  210661  210663  210667  210673  210675  210681  210687  210691  210693  210697  210703  210705  210711  210715  210717  210721  210723  210727  210729  210731  210732  210733  210735  210736  210737  210739  210741  210745  210747  210751  210753  210757  210763  210765  210771  210775  210777  210781  210787  210793  210795  210801  210805  210807  210813  210817  210823  210831  266669 

科目: 來(lái)源: 題型:

如圖,已知三棱錐V-ABC中,VA⊥平面ABC,且AC=2,VA=2,∠ABC=90°
(1)求證:BC垂直平面VAB.
(2)求VC與平面ABC所成的角.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(m-3)ex,g(x)=2ax+1+blnx,其中m,a,b∈R,x>0.曲線g(x)在x=1處的切線方程為y=3x
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)k≤0時(shí),求h(x)=
1
2
kx2+g(x)的單調(diào)區(qū)間;
(3)若f(x)的圖象恒在g(x)圖象的上方,求m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
2
,且過(guò)點(diǎn)A(
3
2
,
1
2
).
(Ⅰ)求橢圓的方程;
(Ⅱ)已知l:y=kx-1,是否存在k使得點(diǎn)A關(guān)于l的對(duì)稱(chēng)點(diǎn)B(不同于點(diǎn)A)在橢圓C上?若存在求出此時(shí)直線l的方程,若不存在說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓C的方程為
x2
4
+
y2
16
=1.
(Ⅰ)求橢圓C的長(zhǎng)軸長(zhǎng)及離心率;
(Ⅱ)已知直線l過(guò)(1,0),與橢圓C交于A,B兩點(diǎn),M為橢圓C的左頂點(diǎn).是否存在直線l使得∠AMB=60°?如果有,求出直線l的方程;如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖所示,在直角梯形ABCD中,E是AB的中點(diǎn),∠B=∠C=90°,AB=
2
,CD=
2
2
,BC=1.梯形ABCD(及其內(nèi)部)繞AB所在的直線旋轉(zhuǎn)一周,形成一個(gè)幾何體.
(Ⅰ)求該幾何體的體積V;
(Ⅱ)設(shè)直角梯形ABCD繞底邊AB所在的直線旋轉(zhuǎn)角θ(∠CBC′=θ∈(0,π))至ABC′D′.
①當(dāng)θ=60°時(shí),求二面角C′-DE-C的正切值大;
②是否存在θ,使得AD′⊥C′D.若存在,求角θ的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且
AE
AC
=
AF
AD
=λ(0<λ<1).
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)若λ=
1
2
,求四棱錐B-CDFE的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知,對(duì)于任意的多項(xiàng)式f(x)與任意復(fù)數(shù)z,f(z)=0?x-z整除f(x).利用上述定理解決下列問(wèn)題:
(1)在復(fù)數(shù)范圍內(nèi)分解因式:x2+x+1;
(2)求所有滿足x2+x+1整除x2n+xn+1的正整數(shù)n構(gòu)成的集合A.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知圓C過(guò)原點(diǎn)且與x-y-4=0相切,且圓心C在直線x+y=0上.
(1)求圓的方程;
(2)過(guò)點(diǎn)P(2,2)的直線l與圓C相交于A,B兩點(diǎn),且|AB|=2,求直線l的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點(diǎn)M在線段PC上,且PM=3MC,求三棱錐P-QBM的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖:四邊形ABCD是梯形,AB∥CD,AD⊥CD,三角形ADE是等邊三角形,且平面ABCD⊥平面ADE,EF∥AB,CD=2AB=2AD=2EF=4,
CG
=
2
3
CF

(1)求證:AF∥平面BDG;
(2)求二面角C-BD-G的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案