相關(guān)習(xí)題
 0  211074  211082  211088  211092  211098  211100  211104  211110  211112  211118  211124  211128  211130  211134  211140  211142  211148  211152  211154  211158  211160  211164  211166  211168  211169  211170  211172  211173  211174  211176  211178  211182  211184  211188  211190  211194  211200  211202  211208  211212  211214  211218  211224  211230  211232  211238  211242  211244  211250  211254  211260  211268  266669 

科目: 來源: 題型:

如圖,在△ABC中,∠C=45°,D為BC中點,BC=2.記銳角∠ADB=α.且滿足cosα=-
7
25

(1)求cos∠CAD;
(2)求BC邊上高的值.

查看答案和解析>>

科目: 來源: 題型:

若復(fù)數(shù)z1=a+i,z2=1-i(i為虛數(shù)單位),且z1•z2為純虛數(shù),則實數(shù)a的值為
 

查看答案和解析>>

科目: 來源: 題型:

圓心在原點上與直線x+y-2=0相切的圓的方程為
 

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,角A,B,C對應(yīng)邊分別是a,b,c,c=2,sin2A+sin2B-sin2C=sinAsinB.
(1)若sinC+sin(B-A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

某工廠某種產(chǎn)品的年產(chǎn)量為1000x件,其中x∈[20,100],需要投入的成本為C(x),當(dāng)x∈[20,80]時,C(x)=
1
2
x2-30x+500(萬元);當(dāng)x∈(80,100]時,C(x)=
20000
x
(萬元).若每一件商品售價為
lnx
x
(萬元),通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于x的函數(shù)解析式;
(2)年產(chǎn)量為多少件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目: 來源: 題型:

已知點P(1+cosα,1-sinα),參數(shù)α∈R,點Q在曲線C:ρ=
6
2
sin(θ+
π
4
)
上.
(1)求點P的軌跡方程和曲線C的直角坐標(biāo)方程;
(2)求點P與點Q之間距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知角α的始邊與x軸的非負(fù)半軸重合,終邊與單位圓O交于點A(x1,y1),將射線OA按逆時針方向旋轉(zhuǎn)
3
后與單位圓O交于點B(x2,y2),f(α)=x1-x2
(Ⅰ)若角α為銳角,求f(α)的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=
3
2
,c=3,△ABC的面積為3
3
,求a的值.

查看答案和解析>>

科目: 來源: 題型:

空氣質(zhì)量指數(shù)(AQI)是衡量空氣質(zhì)量好壞的標(biāo)準(zhǔn),表是我國南方某市氣象環(huán)保部門從去年的每天空氣質(zhì)量檢測數(shù)據(jù)中,隨機(jī)抽取的40天的統(tǒng)計結(jié)果:
空氣質(zhì)量指數(shù)(AQI)國家環(huán)保標(biāo)準(zhǔn)頻數(shù)(天)頻率
[0,50]一級(優(yōu))4
(50,100]二級(良)20
(100,150]三級(輕度污染)8
(150,200]四級(中度污染)4
(200,300]五級(重度污染)3
(300,+∞)六級(嚴(yán)重污染)1
(1)若以這40天的統(tǒng)計數(shù)據(jù)來估計,一年中(365天)該市有多天的空氣質(zhì)量達(dá)到優(yōu)良?
(2)若將頻率視為概率,某中學(xué)擬在今年五月份某三天召開運(yùn)動會,以上表的數(shù)據(jù)為依據(jù),問:
①這三天空氣質(zhì)量都達(dá)標(biāo)(空氣質(zhì)量屬一、二、三級內(nèi))的概率;
②這三天恰好有一天空氣質(zhì)量不達(dá)標(biāo)(指四、五、六級)的概率.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
2x
x+1
,數(shù)列{an}的首項a1=
2
3
,且滿足an+1=f(an),(n∈N*
(Ⅰ)令bn=
1
an
-1,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)令cn=
n
an
,求數(shù)列{cn}前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

一盒中裝有大小質(zhì)地相同的小球,其中紅球4個,白球、黑球各3個,
(Ⅰ)從中任取兩球,求取得的兩球顏色不同的概率;
(Ⅱ)將紅球標(biāo)上0,1,2,3;白球、黑球分別標(biāo)上0,1,2;現(xiàn)從盒中任意取出兩個小球.記所取出的兩球標(biāo)號之積為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案