相關(guān)習(xí)題
 0  211577  211585  211591  211595  211601  211603  211607  211613  211615  211621  211627  211631  211633  211637  211643  211645  211651  211655  211657  211661  211663  211667  211669  211671  211672  211673  211675  211676  211677  211679  211681  211685  211687  211691  211693  211697  211703  211705  211711  211715  211717  211721  211727  211733  211735  211741  211745  211747  211753  211757  211763  211771  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=2
3
sin(
x
2
+
π
4
)•cos(
x
2
+
π
4
)-sin(π+x).
(1)求f(x)的最小正周期.
(2)若將f(x)的圖象向右平移
π
6
個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,π]上的值域.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=4x-1-16x+1的定義域與函數(shù)g(x)=
x+2
-
-x-1
的定義域相同,求函數(shù)f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:

某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排”展開的問卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結(jié)果如下:
支持A方案 支持B方案 支持C方案
35歲以下 200 400 800
35歲以上(含35歲) 100 100 400
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,且∠DAB=60°.側(cè)面PAD為正三角形,其所在的平面垂直于底面ABCD,G為AD邊的中點.
(1)求證:BG⊥平面PAD;
(2)求三棱錐G-CDP的體積;
(3)若E為BC邊的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

已知公比不為1的等比數(shù)列{an}的首項a1=
1
2
,前n項和為Sn,且a4+S4,a5+S5,a6+S6成等差數(shù)列.
(1)求等比數(shù)列{an}的通項公式;
(2)對n∈N+,在an與an+1之間插入3n個數(shù),使這3n+2個數(shù)成等差數(shù)列,記插入的這3n個數(shù)的和為bn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

拋物線E:y2=2px(p>0)的焦點為F,過F且垂直于x軸的直線與拋物線E交于B,C兩點,已知A(-1,0),△ABC為等腰直角三角形.
(Ⅰ)求拋物線E的方程;
(Ⅱ)直線l過點A且與拋物線E交于M,N兩點,點N1與點N交于x軸對稱,證明:直線MN1過定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

用綜合法證明:[sinθ(1+sinθ)+cosθ(1+cosθ)][
2
sin(θ+
π
4
)-1]=sin2θ.

查看答案和解析>>

科目: 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,an+1=2Sn+1(n∈N*).
(1)求a1的值;
(2)設(shè)等差數(shù)列{bn}的公差d<0,前n項和Tn滿足T3=15,且a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目: 來源: 題型:

為了改善空氣質(zhì)量,某市規(guī)定,從2014年3月1日起,對二氧化碳排放量超過130g/km的輕型汽車進行懲罰性征稅.檢測單位對甲、乙兩品牌輕型汽車各抽取5輛進行碳排放檢測,記錄如下:(單位:g/km)
80 110 120 140 150
100 120 x 100 160
經(jīng)測算得乙品牌汽車二氧化碳排放量的平均值為
.
x 
=120g/km.
(Ⅰ)求表中x的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性;
(Ⅱ)從被檢測的5輛甲品牌汽車中隨機抽取2輛,則至少有一輛二氧化碳排放量超過130g/km的概率是多少?
(注:方差s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2],其中
.
x
為x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目: 來源: 題型:

如圖,圓心C的坐標(biāo)為(1,1),圓C與x軸和y軸都相切.
(1)求圓C的方程;
(2)求與圓C相切,且在x軸和y軸上的截距相等的直線方程.

查看答案和解析>>

同步練習(xí)冊答案