相關習題
 0  211630  211638  211644  211648  211654  211656  211660  211666  211668  211674  211680  211684  211686  211690  211696  211698  211704  211708  211710  211714  211716  211720  211722  211724  211725  211726  211728  211729  211730  211732  211734  211738  211740  211744  211746  211750  211756  211758  211764  211768  211770  211774  211780  211786  211788  211794  211798  211800  211806  211810  211816  211824  266669 

科目: 來源: 題型:

某次運動會甲、乙兩名射擊運動員成績?nèi)缦拢?br />甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個成績;
(2)根據(jù)莖葉圖分析甲、乙兩人成績,并估計哪位運動員的成績比較穩(wěn)定.

查看答案和解析>>

科目: 來源: 題型:

數(shù)列{an}的首項a1=a,an+an+1=3n-54,n∈N*
(1)求數(shù)列{an}的通項公式;
(3)設{an}的前n項和為Sn,若Sn的最小值為-243,求a的取值范圍?

查看答案和解析>>

科目: 來源: 題型:

設函數(shù)f(x)=
a
b
,其中向量
a
=(cos2x+1,1),
b
=(1,
3
sin2x+m).
(1)求f(x)的最小正周期;
(2)當x∈[0,
π
6
]時,-4<f(x)<4恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}中,a1=6,an+1+an=3•2n+1,n∈N*
(Ⅰ)設bn=an-2n+1,證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)在數(shù)列{an}中,是否存在連續(xù)三項成等差數(shù)列?若存在,求出所有符合條件的項;若不存在,請說明理由;
(Ⅲ)若1<r<s且r,s∈N*,求證:使得a1,ar,as成等差數(shù)列的點列(r,s)在某一條直線上.

查看答案和解析>>

科目: 來源: 題型:

求過直線x+3y-7=0與已知圓x2+y2+2x-2y-3=0的交點,且在兩坐標軸上的四個截距之和為8的圓的方程.

查看答案和解析>>

科目: 來源: 題型:

若數(shù)列{an}滿足條件:存在正整數(shù)k,使得an+k+an-k=2an對一切n∈N*,n>k都成立,則稱數(shù)列{an}為k級等差數(shù)列.
(1)已知數(shù)列{an}為2級等差數(shù)列,且前四項分別為2,0,4,3,求a8+a9的值;
(2)若an=2n+sinωn(ω為常數(shù)),且{an}是3級等差數(shù)列,求ω所有可能值的集合,并求ω取最小正值時數(shù)列{an}的前3n項和S3n
(3)若{an}既是2級等差數(shù)列{an},也是3級等差數(shù)列,證明:{an}是等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:

有甲乙丙丁4個人過一座簡易木橋,這四個人過橋分別所用的時間是2分鐘,4分鐘,6鐘,8分鐘,由于木橋質(zhì)量原因,橋上最多只能有兩個人. 請你設置一個方案,使這4個人在最快的時間過橋,寫清步驟,最后算出所需時間.

查看答案和解析>>

科目: 來源: 題型:

已知等比數(shù)列{an}滿足a3-a2=10,a1a2a3=125.
(Ⅰ)求數(shù)列an的前n項和Sn;
(Ⅱ)設bn=n(Sn+
5
6
),Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標原點,過點M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
(1)如圖所示,若
AM
=
1
4
MB
,求直線l的方程;
(2)若坐標原點O關于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目: 來源: 題型:

如圖,AB是半徑為3的⊙O的直徑,CD是弦,BA,CD的延長線交于點P,PA=4,PD=5,則∠CBD=
 

查看答案和解析>>

同步練習冊答案