相關(guān)習題
 0  245372  245380  245386  245390  245396  245398  245402  245408  245410  245416  245422  245426  245428  245432  245438  245440  245446  245450  245452  245456  245458  245462  245464  245466  245467  245468  245470  245471  245472  245474  245476  245480  245482  245486  245488  245492  245498  245500  245506  245510  245512  245516  245522  245528  245530  245536  245540  245542  245548  245552  245558  245566  266669 

科目: 來源: 題型:選擇題

12.設(shè)F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,若雙曲線右支上存在一點P使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,O為坐標原點,且|$\overrightarrow{P{F}_{1}}$|=2|$\overrightarrow{P{F}_{2}}$|,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

11.設(shè)f(x)=$\left\{\begin{array}{l}{1-|x-1|,x<2}\\{\frac{1}{2}f(x-2),x≥2}\end{array}\right.$,其圖象與函數(shù)g(x)=$\frac{1}{x}$的圖象交點的個數(shù)是6.

查看答案和解析>>

科目: 來源: 題型:解答題

10.當且僅當x∈(a,b)∪(c,+∞)(其中b≤c)時,函數(shù)f(x)=2|x+1|的圖象在g(x)=|2x-t|+x圖象的下方,則c+b-a的取值范圍為(1,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

9.在△ABC中,BC邊上的垂直平分線與BC,AC分別交于點D,M,若$\overrightarrow{AM}•\overrightarrow{BC}$=6,且|$\overrightarrow{AB}$|=2.則|$\overrightarrow{AC}$|=( 。
A.$\sqrt{10}$B.$\sqrt{6}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知f(x)是函數(shù)y=0.32x+3的反函數(shù),且f(a),f(2a)都有意義.
(1)求f(x);
(2)試比較2f(2a)與4f(a)的大小,并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

7.比較下列各組數(shù)的大;
(1)logab,logba(b>a>1);
(2)log2$\frac{1}{2}$.log2(a2+a+1)(a∈R);
(3)log0.53,log0.23.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知下列不等式,比較正數(shù)m,n的大。
(1)logπm>logπn;
(2)log0.3m>log0.3n.
(3)logam<logan(0<a<1);
(4)logam>logan(a>1)

查看答案和解析>>

科目: 來源: 題型:解答題

5.求證:$\frac{2}{{3}^{n}-1}$<$\frac{1}{2(n-1)n}$(n>2).

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC=BC,AB=2A1A=4.以AB,BC為鄰邊作平行四邊形ABCD,連接A1D和DC1
(Ⅰ)求證:A1D∥平面BCC1B1;
(Ⅱ)若二面角A1-DC-A為45°,
①證明:平面A1C1D⊥平面A1AD;
②求直線A1A與平面A1C1D所成角的正切值.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知兩條斜率為1的直線L1,L2分別過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,且L1與雙曲線交于A,B兩點,L2與雙曲線交于C,D兩點,若四邊形ABCD滿足AC⊥AB,則該雙曲線的離心率為$\frac{\sqrt{10}+\sqrt{2}}{2}$.

查看答案和解析>>

同步練習冊答案