相關(guān)習(xí)題
 0  252904  252912  252918  252922  252928  252930  252934  252940  252942  252948  252954  252958  252960  252964  252970  252972  252978  252982  252984  252988  252990  252994  252996  252998  252999  253000  253002  253003  253004  253006  253008  253012  253014  253018  253020  253024  253030  253032  253038  253042  253044  253048  253054  253060  253062  253068  253072  253074  253080  253084  253090  253098  266669 

科目: 來源: 題型:解答題

12.(1)計(jì)算:log3$\frac{\root{4}{27}}{3}$+lg25+lg4+${log_7}{7^2}$+log23•log34;
(2)設(shè)集合A={x|$\frac{1}{32}$≤2-x≤4},B={x|m-1<x<2m+1}.若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.關(guān)于x的一元二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上恰有唯一根,則實(shí)數(shù)m的取值范圍是(-∞,-$\frac{3}{2}$]∪{-1}.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點(diǎn),且$\frac{AE}{AC}=\frac{AF}{AD}=λ(0<λ<1)$.
(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)是否存在λ∈(0,1),使平面BEF⊥平面ACD?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

9.若直線ax-by+1=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長為4,則$\frac{2}{a}+\frac{1}$的最小值是8.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知P是直線y=x+1上一點(diǎn),M,N分別是圓C1:(x-3)2+(y+3)2=1與圓C2:(x+4)2+(y-4)2=1上的點(diǎn)則|PM|-|PN|的最大值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

7.直線$3x+\sqrt{3}y-a=0$的傾斜角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$.
(I)若a>b>1,試比較f(a)與f(b)的大小;
(Ⅱ)若函數(shù)g(x)=f(x)-($\frac{1}{2}$)x+m,且g(x)在區(qū)間[3,4]上沒有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)y=f(x)是二次函數(shù),且滿足f(0)=3,f(-1)=f(3)=0
(1)求y=f(x)的解析式;
(2)若x∈[t,t+2],試將y=f(x)的最大值表示成關(guān)于t的函數(shù)g(t).

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知f(x)=$\left\{\begin{array}{l}{-x,-1≤x<0}\\{{x}^{2},0≤x<1}\\{x,1≤x≤2}\end{array}\right.$
(1)求f($\frac{3}{2}$),f[f (-$\frac{2}{3}$)]值;
(2)若f (x)=$\frac{1}{2}$,求x值;
(3)作出該函數(shù)簡圖(畫在如圖坐標(biāo)系內(nèi));
(4)求函數(shù)的單調(diào)增區(qū)間與值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,則不等式f(log${\;}_{\frac{1}{2}}$(x-1))+f(2-x)>0的解集為(  )
A.(2,3)B.(1,3)C.(0,2)D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案