相關(guān)習(xí)題
 0  257178  257186  257192  257196  257202  257204  257208  257214  257216  257222  257228  257232  257234  257238  257244  257246  257252  257256  257258  257262  257264  257268  257270  257272  257273  257274  257276  257277  257278  257280  257282  257286  257288  257292  257294  257298  257304  257306  257312  257316  257318  257322  257328  257334  257336  257342  257346  257348  257354  257358  257364  257372  266669 

科目: 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,
(1)求證:AD1⊥平面CDA1B1
(2)求直線AD1與直線BD所成的角.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)

(1)若,求在區(qū)間[0,3]上的最大值;

(2)若,寫出的單調(diào)區(qū)間;

(3)若存在,使得方程有三個不相等的實數(shù)解,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形是矩形, 的中點, 交于點平面.

(I)求證:

(II)若,求點到平面距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓 ),設(shè)為圓軸負(fù)半軸的交點,過點作圓的弦,并使弦的中點恰好落在軸上.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)延長交曲線于點,曲線在點處的切線與直線交于點,試判斷以點為圓心,線段長為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為),上一點,以為邊作等邊三角形,且、三點按逆時針方向排列.

(Ⅰ)當(dāng)點上運動時,求點運動軌跡的直角坐標(biāo)方程;

(Ⅱ)若曲線 ,經(jīng)過伸縮變換得到曲線,試判斷點的軌跡與曲線是否有交點,如果有,請求出交點的直角坐標(biāo),沒有則說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓 過圓上任意一點軸引垂線垂足為(點可重合),點的中點.

(1)求的軌跡方程;

(2)若點的軌跡方程為曲線,不過原點的直線與曲線交于兩點,滿足直線 , 的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在如圖所示的多面體中, 為直角梯形, , ,四邊形為等腰梯形, ,已知, , . 

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】天氣預(yù)報是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實際經(jīng)驗,經(jīng)過分析推斷得到的,在現(xiàn)實的生產(chǎn)生活中有著重要的意義.某快餐企業(yè)的營銷部門經(jīng)過對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨天數(shù)和降雨量的大小有關(guān).

(Ⅰ)天氣預(yù)報說,在今后的四天中,每一天降雨的概率均為,求四天中至少有兩天降雨的概率;

(Ⅱ)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:

降雨量(毫米)

1

2

3

4

5

快餐數(shù)(份)

50

85

115

140

160

試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不造成過多浪費,預(yù)測降雨量為6毫米時需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))

附注:回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過原點且被圓C截得的線段長為2的直線方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù),其中為自然對數(shù)的底數(shù),其圖象與軸交于, 兩點,且

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)證明: 為函數(shù)的導(dǎo)函數(shù)).

查看答案和解析>>

同步練習(xí)冊答案