科目: 來源: 題型:
【題目】設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時,f(x)是單調(diào)函數(shù),則滿足f(x)=f( )的所有x之和為( )
A.﹣4031
B.﹣4032
C.﹣4033
D.﹣4034
查看答案和解析>>
科目: 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價格和房屋的面積的數(shù)據(jù):
房屋面積() | 115 | 110 | 80 | 135 | 105 |
銷售價格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數(shù)據(jù)對應(yīng)的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計當(dāng)房屋面積為150時的銷售價格.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目: 來源: 題型:
【題目】某小區(qū)一住戶在樓頂違規(guī)私自建了“陽光房”,該小區(qū)其他居民對此意見很大,通過物業(yè)和城管部門多次上門協(xié)調(diào),該住戶終于拆除了“陽光房”,對此有人認為既然已經(jīng)建成再拆除太可惜了,為此業(yè)主委員會通過隨機詢問小區(qū)100名性別不同的居民對此件事情的看法,得到如下的2×2列聯(lián)表
認為應(yīng)該拆除 | 認為太可惜了 | 總計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
總計 | 75 | 25 | 100 |
附:
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
K2= ,其中n=a+b+c+d
參照附表,由此可知下列選項正確的是( )
A.在犯錯誤的概率不超過1%的前提下,認為“是否認為拆除太可惜了與性別有關(guān)”
B.在犯錯誤的概率不超過1%的前提下,認為“是否認為拆除太可惜了與性別無關(guān)”
C.有90%以上的把握認為“是否認為拆除太可惜了與性別有關(guān)”
D.有90%以上的把握認為“是否認為拆除太可惜了與性別無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定點,定直線,動點到點的距離與到直線的距離之比等于.
(1)求動點的軌跡的方程;
(2)設(shè)軌跡與軸負半軸交于點,過點作不與軸重合的直線交軌跡于兩點,直線分別交直線于點.試問:在軸上是否存在定點,使得?若存在,求出定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)在單調(diào)遞增,其中.
(1)求的值;
(2)若,當(dāng)時,試比較與的大小關(guān)系(其中是的導(dǎo)函數(shù)),請寫出詳細的推理過程;
(3)當(dāng)時, 恒成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax,(a∈R)
(1)若函數(shù)f(x)在點區(qū)間[e,+∞]處上為增函數(shù),求a的取值范圍;
(2)若函數(shù)f(x)的圖象在點x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3,且k∈Z時,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4時,證明:(mnn)m>(nmm)n .
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實數(shù)的值及直線的方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com