科目: 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)若點(diǎn)、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】為迎接2022年冬奧會(huì),某市組織中學(xué)生開(kāi)展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如圖所示的莖葉圖:
(1)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核為優(yōu)秀的概率;
(2)從圖中考核成績(jī)滿足的學(xué)生中任取3人,設(shè)表示這3人中成績(jī)滿足的人數(shù),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)你根據(jù)圖中數(shù)據(jù),判斷此次冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖1,在矩形中,,,為的中點(diǎn),為中點(diǎn).將沿折起到,使得平面平面(如圖2).
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)在線段上是否存在點(diǎn),使得平面? 若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】小姜同學(xué)有兩個(gè)盒子和,最初盒子有6枚硬幣,盒子是空的.在每一回合中,她可以將一枚硬幣從盒移到盒,或者從盒移走枚硬幣,其中是盒中當(dāng)前的硬幣數(shù).當(dāng)盒空時(shí)她獲勝.則小姜可以獲勝的最少回合是( )
A.三回合B.四回合C.五回合D.六回合
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(本小題滿分12分)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求證: ;
(3)是否存在正整數(shù),使得對(duì)任意正整數(shù)均成立?若存在,求出的最大值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該地區(qū)居民顯示可以過(guò)正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7天每天新增感染人數(shù)不超過(guò)5人”,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各個(gè)選項(xiàng)中,一定符合上述指標(biāo)的是__________.
①平均數(shù); ②標(biāo)準(zhǔn)差; ③平均數(shù)且標(biāo)準(zhǔn)差;
④平均數(shù)且極差小于或等于2; ⑤眾數(shù)等于1且極差小于或等于4.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到直線的距離比到點(diǎn)的距離大
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)為上兩點(diǎn),為坐標(biāo)原點(diǎn),,過(guò)分別作的兩條切線,相交于點(diǎn),求面積的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】《烏鴉喝水》是《伊索寓言》中一個(gè)寓言故事。通過(guò)講述一只烏鴉喝水的故事,告訴人們遇到困難要運(yùn)用智慧、認(rèn)真思考才能讓問(wèn)題迎刃而解的道理。如圖2所示,烏鴉想喝水,發(fā)現(xiàn)有一個(gè)錐形瓶,上面部分是圓柱體,下面部分是圓臺(tái),瓶口直徑為3厘米,瓶底直徑為9厘米,瓶口距瓶頸為厘米,瓶頸到水位線距離和水位線到瓶底距離均為厘米現(xiàn)將1顆石子投入瓶中,發(fā)現(xiàn)水位線上移厘米,若只有當(dāng)水位線到達(dá)瓶口時(shí),烏鴉才能喝到水,則烏鴉共需要投入的石子數(shù)量至少是?(石子體積均視為一致)
圓臺(tái)體積公式:,其中,為圓臺(tái)高,為圓臺(tái)下底面半徑,為圓臺(tái)上底面半徑( )
A.2顆B.3顆C.4顆D.5顆
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com