相關(guān)習(xí)題
 0  265177  265185  265191  265195  265201  265203  265207  265213  265215  265221  265227  265231  265233  265237  265243  265245  265251  265255  265257  265261  265263  265267  265269  265271  265272  265273  265275  265276  265277  265279  265281  265285  265287  265291  265293  265297  265303  265305  265311  265315  265317  265321  265327  265333  265335  265341  265345  265347  265353  265357  265363  265371  266669 

科目: 來源: 題型:

【題目】記無窮數(shù)列的前n項(xiàng),,的最大項(xiàng)為,第n項(xiàng)之后的各項(xiàng)的最小項(xiàng)為,

1)若數(shù)列的通項(xiàng)公式為,寫出,,

2)若數(shù)列的通項(xiàng)公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請說明理由;

3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),,

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若曲線在點(diǎn)(1,0)處的切線為l : xy10,求a,b的值;

3)若恒成立,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直三棱柱中,,點(diǎn),分別是棱,,的中點(diǎn).

1)求證:平面;

2)求證:直線平面

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為實(shí)數(shù),用表示不超過的最大整數(shù),例如,,,對于函數(shù),若存在,,使得,則稱函數(shù)是“函數(shù)”.

1)判斷函數(shù),是否是“函數(shù)”;

2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;

3)若函數(shù)是“函數(shù)”,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線,為曲線上一動(dòng)點(diǎn),過作兩條漸近線的垂線,垂足分別是.

1)當(dāng)運(yùn)動(dòng)到時(shí),求的值;

2)設(shè)直線(不與軸垂直)與曲線交于、兩點(diǎn),與軸正半軸交于點(diǎn),與軸交于點(diǎn),若,,且,求證為定點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

【題目】方艙醫(yī)院的啟用在本次武漢抗擊新冠疫情的關(guān)鍵時(shí)刻起到了至關(guān)重要的作用,圖1為某方艙醫(yī)院的平面設(shè)計(jì)圖,其結(jié)構(gòu)可以看成矩形在四個(gè)角處對稱地截去四個(gè)全等的三角形所得,圖2中所示多邊形,整體設(shè)計(jì)方案要求:內(nèi)部井字形的兩根水平橫軸米,兩根豎軸米,記整個(gè)方艙醫(yī)院的外圍隔離線(圖2實(shí)線部分,軸和邊框的粗細(xì)忽略不計(jì))總長度為,、的交點(diǎn)為、,、的交點(diǎn)為,.

1)若,且兩根橫軸之間的距離米,求外圍隔離線總長度;

2)由于疫情需要,外圍隔離線總長度不超過240米,當(dāng)整個(gè)方艙醫(yī)院(多邊形的面積)最大時(shí),給出此設(shè)計(jì)方案中的大小與的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】直三棱柱中,底面為等腰直角三角形,,,是側(cè)棱上一點(diǎn),設(shè)

(1) 若,求的值;

(2) 若,求直線與平面所成的角.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)集,在中隨機(jī)取出三個(gè)點(diǎn),則這三個(gè)點(diǎn)兩兩之間距離不超過2的概率為________

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,一些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結(jié)論正確的有(

1)方程),表示的曲線在第二和第四象限;

2)曲線上任一點(diǎn)到坐標(biāo)原點(diǎn)的距離都不超過2;

3)曲線構(gòu)成的四葉玫瑰線面積大于;

4)曲線上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

A.1)(2B.1)(2)(3

C.1)(2)(4D.1)(3)(4

查看答案和解析>>

同步練習(xí)冊答案