科目: 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù))
(1)若直線為曲線的一條切線,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)設(shè),若在定義域上有極值點(極值點是指函數(shù)取得極值時對應(yīng)的自變量的值),求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并作出了如圖的散點圖.
溫度/℃ | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù)/個 | 6 | 10 | 22 | 26 | 64 | 118 | 310 |
26 | 79.4 | 3.58 | 112 | 11.6 | 2340 | 35.72 |
其中.
(1)根據(jù)散點圖判斷,與哪一個更適宜作為該昆蟲的產(chǎn)卵數(shù)與溫度的回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;(保留兩位有效數(shù)字)
(3)根據(jù)關(guān)于的回歸方程,估計溫度為33℃時的產(chǎn)卵數(shù).
(參考數(shù)據(jù):)
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點向下平移1個單位,然后橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線相交于兩點,求三角形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點向下平移1個單位,然后橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若曲線和曲線相交于兩點,求三角形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的短軸兩端點與左焦點圍成的三角形面積為3,短軸兩端點與長軸一端點圍成的三角形面積為2,設(shè)橢圓的左、右頂點分別為是橢圓上除兩點外一動點.
(1)求橢圓的方程;
(2)過橢圓的左焦點作平行于直線(是坐標(biāo)原點)的直線,與曲線交于兩點,點關(guān)于原點的對稱點為,求證:成等比數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
【題目】自2016年1月1日全面實施二孩政策以來,為了了解生二孩意愿與年齡段是否有關(guān),某市選取“75后”和“80后”兩個年齡段的已婚婦女作為調(diào)查對象,進(jìn)行了問卷調(diào)查,共調(diào)查了40名“80后”,40名“75后”,其中調(diào)查的“80后”有10名不愿意生二孩,其余的全部愿意生二孩;調(diào)查的“75后”有5人不愿意生二孩,其余的全部愿意生二孩.
(1)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表;
年齡段 | 不愿意 | 愿意 | 合計 |
“80后” | |||
“75后” | |||
合計 |
(2)根據(jù)列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為“生二孩意愿與年齡段有關(guān)”?請說明理由.
參考公式:(其中)
附表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若,分析的單調(diào)性.
(2)若對,都有恒成立,求的取值范圍;
(3)證明:對任意正整數(shù)均成立,其中為自然對數(shù)的底數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在直角梯形中,,,,,,為上一點,且,過作交于,現(xiàn)將沿折到,使,如圖2.
(1)求證:平面
(2)在線段上是否存在一點,使與平面所成的角為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年,海南等8省公布了高考改革綜合方案將采取“”模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門為了更好進(jìn)行生涯規(guī)劃,甲同學(xué)對高一一年來的七次考試成績進(jìn)行統(tǒng)計分析,其中物理、歷史成績的莖葉圖如圖所示.
(1)若甲同學(xué)隨機選擇3門功課,求他選到物理、地理兩門功課的概率;
(2)試根據(jù)莖葉圖分析甲同學(xué)的物理和歷史哪一學(xué)科成績更穩(wěn)定.(不需計算)
(3)甲同學(xué)發(fā)現(xiàn),其物理考試成績(分)與班級平均分(分)具有線性相關(guān)關(guān)系,統(tǒng)計數(shù)據(jù)如下表所示,試求當(dāng)班級平均分為50分時,其物理考試成績.(計算,時精確到0.01)
(分) | 57 | 61 | 65 | 72 | 74 | 77 | 84 |
(分) | 76 | 82 | 82 | 85 | 87 | 90 | 93 |
參考數(shù)據(jù):,,,,,.
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com