1、從甲地到乙地有2條陸路可走,從乙地到丙地有3條陸路可走,又從甲地不經(jīng)過乙地到丙地有2條水路可走.
(1)從甲地經(jīng)乙地到丙地有多少種不同的走法?
(2)從甲地到丙地共有多少種不同的走法?
這仍有5種選法,第三步確定個位上的數(shù)字,同理,它也有5種選法.根據(jù)乘法原理,得到可以組成的三位數(shù)的個數(shù)是N=5X5X5=125.
答:可以組成125個三位數(shù).
練習:
(2)從書架上任取數(shù)學書與語文書各一本,可以分成兩個步驟完成:第一步取一本數(shù)學書,有6種方法;第二步取一本語文書,有5種方法.根據(jù)乘法原理,得到不同的取法的種數(shù)是 N=6X5=30.
答:從書架上取數(shù)學書與語文書各一本,有30種不同的方法.
練習: 一同學有4枚明朝不同古幣和6枚清朝不同古幣
1)從中任取一枚,有多少種不同取法? 2)從中任取明清古幣各一枚,有多少種不同取法?
例2(1)由數(shù)字l,2,3,4,5可以組成多少個數(shù)字允許重復三位數(shù)?
(2)由數(shù)字l,2,3,4,5可以組成多少個數(shù)字不允許重復三位數(shù)?
(3)由數(shù)字0,l,2,3,4,5可以組成多少個數(shù)字不允許重復三位數(shù)?
解:要組成一個三位數(shù)可以分成三個步驟完成:第一步確定百位上的數(shù)字,從5個數(shù)字中任選一個數(shù)字,共有5種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復,
解:(1)從書架上任取一本書,有兩類辦法:第一類辦法是從上層取數(shù)學書,可以從6本書中任取一本,有6種方法;第二類辦法是從下層取語文書,可以從5本書中任取一本,有5種方法.根據(jù)加法原理,得到不同的取法的種數(shù)是6十5=11.
答:從書架L任取一本書,有11種不同的取法.
2.新課
我們先看下面兩個問題.
(l)從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4班,汽車有 2班,輪船有 3班,問一天中乘坐這些交通工具從甲地到乙地共有多少種不同的走法?
板書:圖
因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每一種走法都可以從甲地到達乙地,因此,一天中乘坐這些交通工具從甲地到乙地共有 4十2十3=9種不同的走法.
一般地,有如下原理:
加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么完成這件事共有N=m1十m2十…十mn種不同的方法.
(2) 我們再看下面的問題:
由A村去B村的道路有3條,由B村去C村的道路有2條.從A村經(jīng)B村去C村,共有多少種不同的走法?
板書:圖
這里,從A村到B村有3種不同的走法,按這3種走法中的每一種走法到達B村后,再從B村到C村又有2種不同的走法.因此,從A村經(jīng)B村去C村共有 3X2=6種不同的走法.
一般地,有如下原理:
乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么完成這件事共有N=m1 m2…mn種不同的方法.
例1 書架上層放有6本不同的數(shù)學書,下層放有5本不同的語文書.
1)從中任取一本,有多少種不同的取法?
2)從中任取數(shù)學書與語文書各一本,有多少的取法?
1.新課導入
隨著社會發(fā)展,先進技術(shù),使得各種問題解決方法多樣化,高標準嚴要求,使得商品生產(chǎn)工序復雜化,解決一件事常常有多種方法完成,或幾個過程才能完成。
排列組合這一章都是討論簡單的計數(shù)問題,而排列、組合的基礎就是基本原理,用好基本原理是排列組合的關鍵.
2.教具:多媒體課件.
1.活動:思考,討論,對比,練習.
2.難點:加法原理,乘法原理的區(qū)分。解決方法:運用對比的方法比較它們的異同.
三、活動設計
1.重點:加法原理,乘法原理。 解決方法:利用簡單的舉例得到一般的結(jié)論.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com