2.詞形轉(zhuǎn)換
1) The best ____________ (treat) for a cold is to rest and drink lots of water.
2) Tom is a ____________ (trouble) child and often causes problems.
3) We’ll never know the ____________ () behind the accident.
4) He doesn’t speak much Japanese but he can make himself _____________ (understand).
5) I would have been here an hour ago, but _________________ (fortunate) I missed the train.
6) It’s not _________________ (usual) to feel nervous before an exam.
7) The jacket is available in _________________(variety) colors.
8) There is too much sex and v______________(violent) on TV these days.
9) Times Square attracts more than 30 million ______________ (visit) annually.
10) We bought a __________ (use) car because we couldn’t afford a new one.
1.單詞拼寫
1) The island is shaped like a t_________________ (三角形)
2) His t________________ (褲子) were slightly short.
3) It started to rain, so Tricia stopped to put up her ______________.
4) They hired a private t________________ to help their son with his English.
5) His elder brother works as a t_________________(卡車)driver.
6) He studied physics at Oxford U________________.
7) Their most v_________________ (貴重的) belongs were locked in a safe in the bedroom.
8) The shop sells fresh fruit and v________________.
9) Their 2-1 v________________(勝利) over the Australians was completely unexpected.
10) The travelers found the v______________ (村民) in the valley were very friendly
5.突出向量與其它數(shù)學(xué)知識的交匯
“新課程增加了新的現(xiàn)代數(shù)學(xué)內(nèi)容,其意義不僅在于數(shù)學(xué)內(nèi)容的更新,更重要的是引入新的思維方法,可以更有效地處理和解決數(shù)學(xué)問題和實(shí)際應(yīng)用問題”。因此,新課程卷中有些問題屬于新教材與舊教材的結(jié)合部,凡涉及此類問題,高考命題都采用了新舊結(jié)合,以新帶舊或以新方法解決的方法進(jìn)行處理,從中啟示我們在高考學(xué)習(xí)中,應(yīng)突出向量的工具性,注重向量與其它知識的交匯與融合,但不宜“深挖洞”。我們可以預(yù)測近兩年向量高考題的難度不會也不應(yīng)該上升到壓軸題的水平。
4.注重?cái)?shù)學(xué)思想方法的教學(xué)
①.?dāng)?shù)形結(jié)合的思想方法。
由于向量本身具有代數(shù)形式和幾何形式雙重身份,所以在向量知識的整個(gè)學(xué)習(xí)過程中,都體現(xiàn)了數(shù)形結(jié)合的思想方法,在解決問題過程中要形成見數(shù)思形、以形助數(shù)的思維習(xí)慣,以加深理解知識要點(diǎn),增強(qiáng)應(yīng)用意識。
②.化歸轉(zhuǎn)化的思想方法。
向量的夾角、平行、垂直等關(guān)系的研究均可化歸為對應(yīng)向量或向量坐標(biāo)的運(yùn)算問題;三角形形狀的判定可化歸為相應(yīng)向量的數(shù)量積問題;向量的數(shù)量積公式,溝通了向量與實(shí)數(shù)間的轉(zhuǎn)化關(guān)系;一些實(shí)際問題也可以運(yùn)用向量知識去解決。
③.分類討論的思想方法。
如向量可分為共線向量與不共線向量;平行向量(共線向量)可分為同向向量和反向向量;向量在方向上的投影隨著它們之間的夾角的不同,有正數(shù)、負(fù)數(shù)和零三種情形;定比分點(diǎn)公式中的隨分點(diǎn)P的位置不同,可以大于零,也可以小于零。
3.向量知識,向量觀點(diǎn)在數(shù)學(xué).物理等學(xué)科的很多分支有著廣泛的應(yīng)用,而它具有代數(shù)形式和幾何形式的“雙重身份”能融數(shù)形于一體,能與中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的許多主干知識綜合,形成知識交匯點(diǎn),所以高考中應(yīng)引起足夠的重視. 數(shù)量積的主要應(yīng)用:①求模長;②求夾角;③判垂直;
2.平面向量數(shù)量積的運(yùn)算律
特別注意:
(1)結(jié)合律不成立:;
(2)消去律不成立不能得到;
(3)=0不能得到=或=。
1.兩個(gè)向量的數(shù)量積與向量同實(shí)數(shù)積有很大區(qū)別
(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號由cosq的符號所決定;
(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫成·;今后要學(xué)到兩個(gè)向量的外積×,而×是兩個(gè)向量的數(shù)量的積,書寫時(shí)要嚴(yán)格區(qū)分.符號“· ”在向量運(yùn)算中不是乘號,既不能省略,也不能用“×”代替;
(3)在實(shí)數(shù)中,若a¹0,且a×b=0,則b=0;但是在數(shù)量積中,若¹0,且×=0,不能推出=。因?yàn)槠渲衏osq有可能為0;
(4)已知實(shí)數(shù)a、b、c(b¹0),則ab=bc Þ a=c。但是×= ×;
如右圖:×= |||cosb = |||OA|,×c = ||c|cosa = |||OA|Þ× =×,但 ¹;
(5)在實(shí)數(shù)中,有(×) = (×),但是(×)¹ (×),顯然,這是因?yàn)樽蠖耸桥cc共線的向量,而右端是與共線的向量,而一般與c不共線。
題型1:數(shù)量積的概念
例1.判斷下列各命題正確與否:
(1);
(2);
(3)若,則;
(4)若,則當(dāng)且僅當(dāng)時(shí)成立;
(5)對任意向量都成立;
(6)對任意向量,有。
解析:(1)錯;(2)對;(3)錯;(4)錯;(5)錯;(6)對。
點(diǎn)評:通過該題我們清楚了向量的數(shù)乘與數(shù)量積之間的區(qū)別于聯(lián)系,重點(diǎn)清楚為零向量,而為零。
例2.(1)(2002上海春,13)若、、為任意向量,m∈R,則下列等式不一定成立的是( )
A. B.
C.m()=m+m D.
(2)(2000江西、山西、天津理,4)設(shè)、、是任意的非零平面向量,且相互不共線,則
①(·)-(·)= ②||-||<|-| ③(·)-(·)不與垂直
④(3+2)(3-2)=9||2-4||2中,是真命題的有( )
A.①② B.②③ C.③④ D.②④
解析:(1)答案:D;因?yàn)?sub>,而;而方向與方向不一定同向。
(2)答案:D①平面向量的數(shù)量積不滿足結(jié)合律。故①假;②由向量的減法運(yùn)算可知||、||、|-|恰為一個(gè)三角形的三條邊長,由“兩邊之差小于第三邊”,故②真;③因?yàn)椋?·)-(·)]·=(·)·-(·)·=0,所以垂直.故③假;④(3+2)(3-2)=9··-4·=9||2-4||2成立。故④真。
點(diǎn)評:本題考查平面向量的數(shù)量積及運(yùn)算律,向量的數(shù)量積運(yùn)算不滿足結(jié)合律。
題型2:向量的夾角
例3.(1)(06全國1文,1)已知向量、滿足、,且,則與的夾角為( )
A. B. C. D.
(2)(06北京文,12)已知向量=(cos,sin),=(cos,sin),且,那么與的夾角的大小是 。
(3)已知兩單位向量與的夾角為,若,試求與的夾角。
(4)(2005北京3)| |=1,| |=2,= + ,且⊥,則向量與的夾角為 ( )
A.30° B.60° C.120° D.150°
解析:(1)C;(2);
(3)由題意,,且與的夾角為,
所以,,
,
,
同理可得。
而,
設(shè)為與的夾角,
則。
(4)C;設(shè)所求兩向量的夾角為
即:
所以
點(diǎn)評:解決向量的夾角問題時(shí)要借助于公式,要掌握向量坐標(biāo)形式的運(yùn)算。向量的模的求法和向量間的乘法計(jì)算可見一斑。對于這個(gè)公式的變形應(yīng)用應(yīng)該做到熟練,另外向量垂直(平行)的充要條件必需掌握。
例4.(1)(06全國1理,9)設(shè)平面向量、、的和。如果向量、、,滿足,且順時(shí)針旋轉(zhuǎn)后與同向,其中,則( )
A.-++= B.-+=
C.+-= D.++=
(2)(06湖南理,5)已知 且關(guān)于的方程有實(shí)根, 則與的夾角的取值范圍是( )
A. B. C. D.
解析:(1)D;(2)B;
點(diǎn)評:對于平面向量的數(shù)量積要學(xué)會技巧性應(yīng)用,解決好實(shí)際問題。
題型3:向量的模
例5.(1)(06福建文,9)已知向量與的夾角為,則等于( )
A.5 B.4 C.3 D.1
(2)(06浙江文,5)設(shè)向量滿足,,則( )
A.1 B.2 C.4 D.5
解析:(1)B;(2)D;
點(diǎn)評:掌握向量數(shù)量積的逆運(yùn)算,以及。
例6.已知=(3,4),=(4,3),求x,y的值使(x+y)⊥,且|x+y|=1。
解析:由=(3,4),=(4,3),有x+y=(3x+4y,4x+3y);
又(x+y)⊥(x+y)·=03(3x+4y)+4(4x+3y)=0;
即25x+24y=0 ①;
又|x+y|=1|x+y|2=1;
(3x+4y)2+(4x+3y)2=1;
整理得25x2+48xy+25y2=1即x(25x+24y)+24xy+25y2=1 ②;
由①②有24xy+25y2=1 ③;
將①變形代入③可得:y=±;
再代回①得:。
點(diǎn)評:這里兩個(gè)條件互相制約,注意體現(xiàn)方程組思想。
題型4:向量垂直、平行的判定
例7.(2005廣東12)已知向量,,且,則 。
解析:∵,∴,∴,∴。
例8.已知,,,按下列條件求實(shí)數(shù)的值。(1);(2);。
解析:
(1);
(2);
。
點(diǎn)評:此例展示了向量在坐標(biāo)形式下的平行、垂直、模的基本運(yùn)算。
題型5:平面向量在代數(shù)中的應(yīng)用
例9.已知。
分析:,可以看作向量的模的平方,而則是、的數(shù)量積,從而運(yùn)用數(shù)量積的性質(zhì)證出該不等式。
證明:設(shè)
則。
點(diǎn)評:在向量這部分內(nèi)容的學(xué)習(xí)過程中,我們接觸了不少含不等式結(jié)構(gòu)的式子,如等。
例10.已知,其中。
(1)求證:與互相垂直;
(2)若與()的長度相等,求。
解析:(1)因?yàn)?/p>
所以與互相垂直。
(2),
,
所以,
,
因?yàn)椋?/p>
所以,
有,
因?yàn),故?/p>
又因?yàn)椋?/p>
所以。
點(diǎn)評:平面向量與三角函數(shù)在“角”之間存在著密切的聯(lián)系。如果在平面向量與三角函數(shù)的交匯處設(shè)計(jì)考題,其形式多樣,解法靈活,極富思維性和挑戰(zhàn)性。若根據(jù)所給的三角式的結(jié)構(gòu)及向量間的相互關(guān)系進(jìn)行處理。可使解題過程得到簡化,從而提高解題的速度。
題型6:平面向量在幾何圖形中的應(yīng)用
例11.(2002年高考題)已知兩點(diǎn),且點(diǎn)P(x,y)使得,成公差小于零的等差數(shù)列。
(1)求證;
(2)若點(diǎn)P的坐標(biāo)為,記與的夾角為,求。
解析:(1)略解:,由直接法得
(2)當(dāng)P不在x軸上時(shí),
而
所以,當(dāng)P在x軸上時(shí),,上式仍成立。
圖1
點(diǎn)評:由正弦面積公式得到了三角形面積與數(shù)量積之間的關(guān)系,由面積相等法建立等量關(guān)系。
例12.用向量法證明:直徑所對的圓周角是直角。
已知:如圖,AB是⊙O的直徑,點(diǎn)P是⊙O上任一點(diǎn)(不與A、B重合),求證:∠APB=90°。
證明:聯(lián)結(jié)OP,設(shè)向量,則且,
,即∠APB=90°。
點(diǎn)評:平面向量是一個(gè)解決數(shù)學(xué)問題的很好工具,它具有良好的運(yùn)算和清晰的幾何意義。在數(shù)學(xué)的各個(gè)分支和相關(guān)學(xué)科中有著廣泛的應(yīng)用。
題型7:平面向量在物理中的應(yīng)用
例13.如圖所示,正六邊形PABCDE的邊長為b,有五個(gè)力、作用于同一點(diǎn)P,求五個(gè)力的合力。
解析:所求五個(gè)力的合力為,如圖3所示,以PA、PE為邊作平行四邊形PAOE,則,由正六邊形的性質(zhì)可知,且O點(diǎn)在PC上,以PB、PD為邊作平行四邊形PBFD,則,由正六邊形的性質(zhì)可知,且F點(diǎn)在PC的延長線上。
由正六邊形的性質(zhì)還可求得
故由向量的加法可知所求五個(gè)力的合力的大小為,方向與的方向相同。
2.向量的應(yīng)用
(1)向量在幾何中的應(yīng)用;
(2)向量在物理中的應(yīng)用。
1.向量的數(shù)量積
(1)兩個(gè)非零向量的夾角
已知非零向量a與a,作=,=,則∠AOA=θ(0≤θ≤π)叫與的夾角;
說明:(1)當(dāng)θ=0時(shí),與同向;
(2)當(dāng)θ=π時(shí),與反向;
(3)當(dāng)θ=時(shí),與垂直,記⊥;
(4)注意在兩向量的夾角定義,兩向量必須是同起點(diǎn)的,范圍0°≤q≤180°。
|
(2)數(shù)量積的概念
已知兩個(gè)非零向量與,它們的夾角為,則·=︱︱·︱︱cos叫做與的數(shù)量積(或內(nèi)積)。規(guī)定;
向量的投影:︱︱cos=∈R,稱為向量在方向上的投影。投影的絕對值稱為射影;
(3)數(shù)量積的幾何意義: ·等于的長度與在方向上的投影的乘積。
(4)向量數(shù)量積的性質(zhì)
①向量的模與平方的關(guān)系:。
②乘法公式成立
;
;
③平面向量數(shù)量積的運(yùn)算律
交換律成立:;
對實(shí)數(shù)的結(jié)合律成立:;
分配律成立:。
④向量的夾角:cos==。
當(dāng)且僅當(dāng)兩個(gè)非零向量與同方向時(shí),θ=00,當(dāng)且僅當(dāng)與反方向時(shí)θ=1800,同時(shí)與其它任何非零向量之間不談夾角這一問題。
(5)兩個(gè)向量的數(shù)量積的坐標(biāo)運(yùn)算
已知兩個(gè)向量,則·=。
(6)垂直:如果與的夾角為900則稱與垂直,記作⊥。
兩個(gè)非零向量垂直的充要條件:⊥·=O,平面向量數(shù)量積的性質(zhì)。
(7)平面內(nèi)兩點(diǎn)間的距離公式
設(shè),則或。
如果表示向量的有向線段的起點(diǎn)和終點(diǎn)的坐標(biāo)分別為、,那么(平面內(nèi)兩點(diǎn)間的距離公式)。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com