0  440822  440830  440836  440840  440846  440848  440852  440858  440860  440866  440872  440876  440878  440882  440888  440890  440896  440900  440902  440906  440908  440912  440914  440916  440917  440918  440920  440921  440922  440924  440926  440930  440932  440936  440938  440942  440948  440950  440956  440960  440962  440966  440972  440978  440980  440986  440990  440992  440998  441002  441008  441016  447090 

例1、求函數(shù)的最大值和最小值.

例2、在平面直角坐標(biāo)系中有點(diǎn).

 (1)求向量的夾角的余弦值用表示的函數(shù);

 (2)求的最值.

例3、如圖,某海濱浴場(chǎng)的岸邊可近似地看作直線,救生員現(xiàn)在岸邊的A處,發(fā)現(xiàn)海中的B處有人求救,救生員沒(méi)有直接從A處游向B處,而是沿岸邊A跑到離B最近的D處,然后游向B處,若救生員在岸邊的行進(jìn)速度為6米/秒,在海水中的行進(jìn)速度為2米/秒.

(1)分析救生員的選擇是否正確?

(2)在AD上找一處C,使救生員從A到B的時(shí)間最短,并求出最短時(shí)間。

例4、已知函數(shù)。

(1)證明:當(dāng)時(shí),經(jīng)過(guò)圖象上的任意兩點(diǎn)的直線的斜率恒為負(fù)數(shù);

(2)設(shè)有不相等的實(shí)數(shù),,且,求+的值。

例5、(05山東卷)已知向量,

的值.

試題詳情

5、設(shè),則的最大值是  ,最小值是  .

試題詳情

4、函數(shù)與函數(shù)的圖象圍成一個(gè)封閉圖形,這個(gè)封閉圖形的面積是      .

試題詳情

3、已知是定義在(0,3)上的函數(shù),圖象如圖所示,那么不等式的解集是          (   )

 A、     B、

 C、    D、

試題詳情

2、設(shè)實(shí)數(shù)滿足,是正常數(shù),且,那么的最大值是                          (    )

 A、    B、   C、   D、

試題詳情

1、直線,,當(dāng)變化時(shí),交點(diǎn)的軌跡是                                (   )

 A、直線      B、直線

 C、圓        D、無(wú)法確定

試題詳情

三角函數(shù)是一種應(yīng)用十分廣泛的函數(shù),常將一些代數(shù)問(wèn)題、幾何問(wèn)題或某些實(shí)際應(yīng)用問(wèn)題通過(guò)三角代換,利用轉(zhuǎn)化和化歸的思想方法轉(zhuǎn)化為三角問(wèn)題來(lái)求解。

試題詳情

10. 在△ABC中,sinA=,判斷這個(gè)三角形的形狀.

分析:判斷一個(gè)三角形的形狀,可由三個(gè)內(nèi)角的關(guān)系確定,亦可由三邊的關(guān)系確定.采用后一種方法解答本題,就必須“化角為邊”.

解:應(yīng)用正弦定理、余弦定理,可得

a=,所以

,

化簡(jiǎn)得a2=b2+c2.所以△ABC是直角三角形.

評(píng)述:恒等變形是學(xué)好數(shù)學(xué)的基本功,變形的方向是關(guān)鍵.若考慮三內(nèi)角的關(guān)系,本題可以從已知條件推出cosA=0.

[探索題]已知AB、C是△ABC的三個(gè)內(nèi)角,y=cotA+.

(1)若任意交換兩個(gè)角的位置,y的值是否變化?試證明你的結(jié)論.

(2)求y的最小值.

解:(1)∵y=cotA+

=cot A+

=cot A+

=cotA+cotB+cotC,

∴任意交換兩個(gè)角的位置,y的值不變化.

(2)∵cos(BC)≤1,

y≥cotA+=+2tan=(cot+3tan)≥=.

故當(dāng)A=B=C=時(shí),ymin=.

評(píng)述:本題的第(1)問(wèn)是一道結(jié)論開(kāi)放型題,y的表達(dá)式的表面不對(duì)稱(chēng)性顯示了問(wèn)題的有趣之處.第(2)問(wèn)實(shí)際上是一道常見(jiàn)題:在△ABC中,求證:cotA+cotB+cotC.

可由三數(shù)的均值不等式結(jié)合cotA+cotB+cotC =cotAcotBcotC來(lái)證.

試題詳情

9. (2004全國(guó)Ⅱ)已知銳角△ABC中,sin(A+B)=,sin(AB)=.

(1)求證:tanA=2tanB;

(2)設(shè)AB=3,求AB邊上的高.

剖析:有兩角的和與差聯(lián)想到兩角和與差的正弦公式,結(jié)合圖形,以(1)為鋪墊,解決(2).

(1)證明:∵sin(A+B)=,sin(AB)=

=2.

∴tanA=2tanB.

(2)解:A+B<π,∴sin(A+B)=.

∴tan(A+B)=-,

=-.將tanA=2tanB代入上式整理得2tan2B-4tanB-1=0,解得tanB=(負(fù)值舍去).得tanB=,∴tanA=2tanB=2+.

設(shè)AB邊上的高為CD,則AB=AD+DB=+=.由AB=3得CD=2+,所以AB邊上的高為2+.

評(píng)述:本題主要考查三角函數(shù)概念,兩角和與差的公式以及應(yīng)用,分析和計(jì)算能力.

試題詳情

8.(2005春北京)在△ABC中,sinA+cosA=,AC=2,AB=3,求tanA的值和△ABC的面積.

解法一:∵sinA+cosA=cos(A-45°)=

∴cos(A-45°)=.

又0°<A<180°,

A-45°=60°,A=105°.

∴tanA=tan(45°+60°)==-2-.

∴sinA=sin105°=sin(45°+60°)

=sin45°cos60°+cos45°sin60°=.

SABC=AC·ABsinA

=·2·3·

=(+).

解法二:∵sinA+cosA=,                                         ①

∴(sinA+cosA)2=.∴2sinAcosA=-.

∵0°<A<180°,∴sinA>0,cosA<0.

∴90°<A<180°.

∵(sinA-cosA)2=1-2sinAcosA=,

∴sinA-cosA=.                                                 ②

①+②得sinA=.

①-②得cosA=.

∴tanA==·=-2-.

(以下同解法一)

試題詳情


同步練習(xí)冊(cè)答案