已知關(guān)于x的方程x2-(k+1)x+
1
4
k2+1=0,根據(jù)下列條件,分別求出k的值.
(1)方程的兩實數(shù)根x1,x2滿足x1=x2;
(2)方程兩實數(shù)根的積為5.
考點:根與系數(shù)的關(guān)系,根的判別式
專題:
分析:(1)由方程有兩個相等的實數(shù)根,得出判別式△=b2-4ac=[-(k+1)]2-4(
1
4
k2+1)=2k-3=0,據(jù)此求出k的值;
(2)根據(jù)一元二次方程的根與系數(shù)的關(guān)系及已知條件得出
1
4
k2+1=5,進而可求k的值.
解答:解:(1)△=[-(k+1)]2-4(
1
4
k2+1)
=k2+2k+1-k2-4
=2k-3.
要使x1=x2,須△=0,
即  2k-3=0.
所以k=
3
2
;

(2)x1•x2=
1
4
k2+1=5,
所以k=±4.
當k=-4時,△<0,
所以k=4.
點評:本題考查了一元二次方程根的判別式和根與系數(shù)的關(guān)系的應用,是基礎(chǔ)知識,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
 
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.
(4)若拋物線y=-x2+4mx-8m+4與直線y=3交點的橫坐標均為整數(shù),是否存在整數(shù)m的值使這條拋物線的“拋物線三角形”有一邊上的中線長恰好等于這邊的長?若存在,直接寫出m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

模型建立:如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過A作AD⊥ED于D,過B作BE⊥ED于E.

求證:△BEC≌△CDA.
模型應用:
(1)已知直線l1:y=
4
3
x+4與y軸交與A點,將直線l1繞著A點順時針旋轉(zhuǎn)45°至l2,如圖2,求l2的函數(shù)解析式.
(2)如圖3,矩形ABCO,O為坐標原點,B的坐標為(8,6),A、C分別在坐標軸上,P是線段BC上動點,設(shè)PC=m,已知點D在第一象限,且是直線y=2x-6上的一點,若△APD是不以A為直角頂點的等腰Rt△,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,拋物線y=-x2+bx經(jīng)過點A(4,0).直線x=2與x軸交于點C,點E是直線x=2上的一個動點,過線段CE的中點G作DF⊥CE交拋物線于D、F兩點.
(1)求這條拋物線的解析式.
(2)當點E落在拋物線頂點上時,求DF的長.
(3)當四邊形CDEF是正方形時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:(-1)2013+
327
+|1-
2
|-
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知∠GAB=∠GDF,∠FAC+∠ACE=180°,求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,∠C=90°,AC=
2
,D是BC的中點,且∠ADC=45°,求△ABC的周長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解方程組:
x+y+z=6
3x-y=3
2x+3y-z=12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知代數(shù)式x2+4x可以利用完全平方公式變形為(x+2)2-4,進而可知x2+4x的最小值是-4,依此方法,代數(shù)式x2+y2+6x-2y+12的最小值是
 

查看答案和解析>>

同步練習冊答案