【題目】四邊形ABCD是一個(gè)長(zhǎng)方形,將AD沿某一直線AFF為折痕與CD邊的交點(diǎn))折疊,使點(diǎn)D落在BC邊上的某一點(diǎn)E處,請(qǐng)用沒(méi)有刻度的直尺與圓規(guī)找出點(diǎn)E與折痕AF,并在折痕AF上找一點(diǎn)P滿足BPEP最小.

【答案】見詳解.

【解析】

根據(jù)題意,以A為圓心,AD長(zhǎng)為半徑畫弧,與邊BC相交于點(diǎn)E,連接AE,作∠DAE的角平分線,交CD于點(diǎn)F ,連接AF即可;連接DE ,由點(diǎn)E與點(diǎn)D關(guān)于AF對(duì)稱,則連接BD,與AF相交于點(diǎn)P,連接PE ,此時(shí)BPEP為最小值.

解:如圖:

①以A為圓心,AD長(zhǎng)為半徑畫弧,與邊BC相交于點(diǎn)E,連接AE,即點(diǎn)E為所求點(diǎn);

②作∠DAE的角平分線,交CD于點(diǎn)F ,連接AF,即AF為折痕;

③連接DE,由DF=EF,則AF垂直平分DE,

∴點(diǎn)D與點(diǎn)E關(guān)于AF對(duì)稱,則

連接BD,BDAF相交于點(diǎn)P,連接PE,則PE=PD,此時(shí)PE+PB為最小值.

最小值為:PE+PB=PD+PB=BD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么這個(gè)三角形叫“恰等三角形”,這條中線叫“恰等中線”.

(直角三角形中的“恰等中線”)

(1)如圖1,在△ABC中,∠C=90°,AC,BC=2,AM為△ABC的中線.求證:AM是“恰等中線”.

(等腰三角形中的“恰等中線”)

2)已知,等腰△ABC是“恰等三角形”,ABAC20,求底邊BC的平方.

(一般三角形中的“恰等中線”)

3)如圖2,若AM是△ABC的“恰等中線”,則BC2AB2,AC2之間的數(shù)量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市經(jīng)銷一種銷售成本為每件40元的商品.據(jù)市場(chǎng)調(diào)查分析,如果按每件50元銷售,一周能售出500件,若銷售單價(jià)每漲1元,每周銷售量就減少10件.設(shè)銷售單價(jià)為每件x元(x≥50),一周的銷售量為y件.

(1)寫出yx的函數(shù)關(guān)系式.(標(biāo)明x的取值范圍)

(2)設(shè)一周的銷售利潤(rùn)為S,寫出Sx的函數(shù)關(guān)系式,并確定當(dāng)單價(jià)在什么范圍內(nèi)變化時(shí),利潤(rùn)隨著單價(jià)的增大而增大?

(3)在超市對(duì)該種商品投入不超過(guò)10 000元的情況下,使得一周銷售利潤(rùn)達(dá)到8 000元,銷售單價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】早晨,小明步行到離家900米的學(xué)校去上學(xué),到學(xué)校時(shí)發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學(xué)校.已知小明步行從學(xué)校到家所用的時(shí)間比他騎自行車從家到學(xué)校所用的時(shí)間多10分鐘,小明騎自行車速度是步行速度的3倍.

(1)求小明步行速度(單位:米/分)是多少;

(2)下午放學(xué)后,小明騎自行車回到家,然后步行去圖書館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書館的時(shí)間不超過(guò)騎自行車從學(xué)校到家時(shí)間的2倍,那么小明家與圖書館之間的路程最多是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凱里市某文具店某種型號(hào)的計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠,優(yōu)勢(shì)方法是:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降價(jià)0.1元,例如:某人買18只計(jì)算器,于是每只降價(jià)0.1×(18﹣10)=0.8(元),因此所買的18只計(jì)算器都按每只19.2元的價(jià)格購(gòu)買,但是每只計(jì)算器的最低售價(jià)為16元.

(1)求一次至少購(gòu)買多少只計(jì)算器,才能以最低價(jià)購(gòu)買?

(2)求寫出該文具店一次銷售x(x10)只時(shí),所獲利潤(rùn)y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)一天,甲顧客購(gòu)買了46只,乙顧客購(gòu)買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請(qǐng)你說(shuō)明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時(shí),為了獲得最大利潤(rùn),店家一次應(yīng)賣多少只?這時(shí)的售價(jià)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線:,記為,它與x軸交于點(diǎn)O,;將繞點(diǎn)旋轉(zhuǎn),交x軸于點(diǎn);將繞點(diǎn)旋轉(zhuǎn),交x軸于點(diǎn);如此進(jìn)行下去,得到一“波浪線”,若點(diǎn)在此“波浪線”上,則m的值為  

A. 4 B. C. D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)和改善環(huán)境,發(fā)展新經(jīng)濟(jì),國(guó)家出臺(tái)了不限行、不限購(gòu)等諸多新能源汽車優(yōu)惠政策鼓勵(lì)新能源汽車的發(fā)展,為響應(yīng)號(hào)召,某市某汽車專賣店銷售AB兩種型號(hào)的新能源汽車共25輛,這兩種型號(hào)的新能源汽車的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)萬(wàn)元

售價(jià)萬(wàn)元

A

10

B

15

如何進(jìn)貨,進(jìn)貨款恰好為325萬(wàn)元?

如何進(jìn)貨,該專賣店售完A,B兩種型號(hào)的新能源汽車后獲利最多且不超過(guò)進(jìn)貨價(jià)的,此時(shí)利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)一個(gè)矩形ABCD給出如下定義:在同一平面內(nèi),如果上存在一點(diǎn),使得這點(diǎn)到矩形ABCD的四個(gè)頂點(diǎn)的距離相等,那么稱矩形ABCD的“隨從矩形”如圖,在平面直角坐標(biāo)系xOy中,直線lx軸于點(diǎn)M的半徑為4,矩形ABCD沿直線運(yùn)動(dòng)在直線l,軸,當(dāng)矩形ABCD的“隨從矩形”時(shí),點(diǎn)A的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線ACBD于點(diǎn)O,且AO=BO=4,CO=8,∠ADB=2ACB,則四邊形ABCD的面積為(

A.48B.42C.36D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案