【題目】如圖,一段拋物線:,記為,它與x軸交于點(diǎn)O,;將繞點(diǎn)旋轉(zhuǎn)得,交x軸于點(diǎn);將繞點(diǎn)旋轉(zhuǎn)得,交x軸于點(diǎn);如此進(jìn)行下去,得到一“波浪線”,若點(diǎn)在此“波浪線”上,則m的值為
A. 4 B. C. D. 6
【答案】C
【解析】
先解方程得到-x(x-5)=0得A1(5,0),則OA1=5,利用旋轉(zhuǎn)性質(zhì)得A1A2=A2A3=…=OA1=5,再利用拋物線的性質(zhì)可確定拋物線C404的解析式為y=(x-2015)(x-2020),然后計(jì)算自變量為2018時(shí)的函數(shù)值即可得到m的值.
當(dāng)y=0時(shí),-x(x-5)=0,解得x1=0,x2=5,則A1(5,0),
∴OA1=5,
∵將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,得到一“波浪線”,
∴A1A2=A2A3=…=OA1=5,
∴拋物線C404的解析式為y=(x-5×403)(x-6×404),即y=(x-2015)(x-2020),
當(dāng)x=2018時(shí),y=(2018-2015)(2018-2020)=-6,
即m=-6.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對(duì)直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,點(diǎn)B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD的長(zhǎng)度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABFG和正方形CDEF中,使點(diǎn)B、C的坐標(biāo)分別為(0,0)和(4,0).
(1)在圖中建立平面直角坐標(biāo)系;
(2)寫出A點(diǎn)的坐標(biāo);
(3)畫出正方形EFCD左平移2個(gè)單位,上平移1個(gè)單位后的正方形E′F′C′D′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是一個(gè)長(zhǎng)方形,將AD沿某一直線AF(F為折痕與CD邊的交點(diǎn))折疊,使點(diǎn)D落在BC邊上的某一點(diǎn)E處,請(qǐng)用沒(méi)有刻度的直尺與圓規(guī)找出點(diǎn)E與折痕AF,并在折痕AF上找一點(diǎn)P滿足BP+EP最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了了解七年級(jí)學(xué)生每周的課外閱讀情況,通過(guò)問(wèn)卷調(diào)查了該縣七年級(jí)部分學(xué)生在某周的課外閱讀量,把收集到的數(shù)據(jù)繪制成了如下的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖中提供的信息,回答下列問(wèn)題:
(1)參加問(wèn)卷調(diào)查的有多少人?
(2)將閱讀量在9﹣﹣12千字的直方圖補(bǔ)充完整;
(3)求閱讀量在6﹣﹣9千字內(nèi)的扇形統(tǒng)計(jì)圖中的圓心角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合探究
問(wèn)題情境:
我們?cè)诘谑徽隆度切巍分袑W(xué)習(xí)了三角形的邊與角的性質(zhì),在第十二章《全等三角形》中學(xué)習(xí)了全等三角形的性質(zhì)和判定.在一些探究題中經(jīng)常用以上知識(shí)轉(zhuǎn)化角和邊,進(jìn)而解決問(wèn)題.
問(wèn)題初探:
如圖1,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為直線AB上的一個(gè)動(dòng)點(diǎn)(D與A,B不重合),連接CD,以CD為直角邊作等腰直角三角形CDE,連接BE.
(1)當(dāng)點(diǎn)D在線段AB上時(shí),AD與BE的數(shù)量關(guān)系是 ;位置關(guān)系是 ;AB,BD,BE三條線段之間的關(guān)系是 .
類比再探:
(2)如圖2,當(dāng)點(diǎn)D運(yùn)動(dòng)到AB的延長(zhǎng)線上時(shí),AD與BE還存在(1)中的位置關(guān)系嗎?若存在,請(qǐng)說(shuō)明理由.同時(shí)探索AB,BD,BE三條線段之間的數(shù)量關(guān)系,并說(shuō)明理由.
能力提升:
(3)如圖3,當(dāng)點(diǎn)D運(yùn)動(dòng)到BA的延長(zhǎng)線上時(shí),若AB=7,AD=2,則AE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,,.
(1)作出關(guān)于直線對(duì)稱的圖形△并寫出△各頂點(diǎn)的坐標(biāo);
(2)將△向左平移2個(gè)單位,作出平移后的△,并寫出△各頂點(diǎn)的坐標(biāo);
(3)觀察和△,它們是否關(guān)于某直線對(duì)稱?若是,請(qǐng)指出對(duì)稱軸,并求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC=45°,將△BCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B的對(duì)應(yīng)點(diǎn)恰好與點(diǎn)A重合,得到△ACE.
(1)求證:AE⊥BD;
(2)若AD=2,CD=3,試求四邊形ABCD的對(duì)角線BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com