【題目】如圖,已知△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,∠CBD=∠A.
(1)求證:BC為⊙O的切線;
(2)若E為中點(diǎn),BD=12,sin∠BED=,求BE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)由圓周角定理和已知條件證出∠CBD+∠ABD=90°.得出∠ABC=90°,即可得出結(jié)論.
(2)連接AE.由圓周角定理得出∠BAD=∠BED,由三角函數(shù)定義求出直徑AB=20.證出AE=BE.得出△AEB是等腰直角三角形.得出∠BAE=45°,由三角函數(shù)即可得出結(jié)果.
(1)證明:∵AB是⊙O的直徑,
∴∠ADB=90°.
∴∠A+∠ABD=90°.
又∵∠A=∠CBD,
∴∠CBD+∠ABD=90°.
∴∠ABC=90°.
∴AB⊥BC.
又∵AB是⊙O的直徑,
∴BC為⊙O的切線.
(2)解:連接AE.如圖所示:
∵AB是⊙O的直徑,
∴∠AEB=∠ADB=90°.
∵∠BAD=∠BED,
∴sin∠BAD=sin∠BED=.
∴在Rt△ABD中,sin∠BAD=,
∵BD=12,
∴AB=20.
∵E為的中點(diǎn),
∴AE=BE.
∴△AEB是等腰直角三角形.
∴∠BAE=45°.
∴BE=AB×sin∠BAE=20×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬(wàn)元)與年產(chǎn)量x(萬(wàn)件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價(jià)z(元/件)與年銷售量x(萬(wàn)件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤(rùn)為w萬(wàn)元.(毛利潤(rùn)=銷售額﹣生產(chǎn)費(fèi)用)
(1)請(qǐng)直接寫出y與x以及z與x之間的函數(shù)關(guān)系式;
(2)求w與x之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過(guò)360萬(wàn)元,今年最多可獲得多少萬(wàn)元的毛利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,BA=AD=DC,點(diǎn)E在CB延長(zhǎng)線上,BE=AD,連接AC、AE.
⑴ 求證:AE=AC;
⑵ 若AB⊥AC, F是BC的中點(diǎn),試判斷四邊形AFCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購(gòu)進(jìn)電冰箱的數(shù)量與用64000元購(gòu)進(jìn)空調(diào)的數(shù)量相等.
求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售總利潤(rùn)為y元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,總利潤(rùn)不低于13000元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點(diǎn)D,過(guò)點(diǎn)A作⊙O的切線AP,AP與OD的延長(zhǎng)線交于點(diǎn)P,連接PC、BC.
【1】猜想:線段OD與BC有何數(shù)量和位置關(guān)系,并證明你的結(jié)論.
【2】求證:PC是⊙O的切線
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AC,BC是⊙O的兩條弦,過(guò)點(diǎn)C作∠BCD=∠A,CD交AB的延長(zhǎng)線于點(diǎn)D.
(1)試說(shuō)明:CD是⊙O的切線;
(2)若tanA=,求的值;
(3)在(2)的條件下,若AB=7,DE平分∠ADC交AC于點(diǎn)E,求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1.
(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線上時(shí),求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為16,求△CBC1的面積;
(3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長(zhǎng)度的最大值與最小值之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E,F分別在矩形ABCD的邊AB,BC上,連接EF,將△BEF沿直線EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如圖1,當(dāng)∠BEF=45°時(shí),EH的延長(zhǎng)線交DC于點(diǎn)M,求HM的長(zhǎng);
(2)如圖2,當(dāng)FH的延長(zhǎng)線經(jīng)過(guò)點(diǎn)D時(shí),求tan∠FEH的值;
(3)如圖3,連接AH,HC,當(dāng)點(diǎn)F在線段BC上運(yùn)動(dòng)時(shí),試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com