1.y2的圖象, (3)結合函數(shù)圖象.解決問題:當△ACP為等腰三角形時.AP的長度約為 cm.">

【題目】如圖,點P上一動點,連接AP,作∠APC=45°,交弦AB于點C.已知AB=6cm,設AP兩點間的距離為xcm,PC兩點間的距離為y1cm,AC兩點間的距離為y2cm.(當點P與點A重合時,y1,y2的值為0;當點P與點B重合時,y1的值為0,y2的值為6).

小智根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小智的探究過程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了yx的幾組對應值;

x/cm

0

1

2

3

4

5

6

y1/cm

0

1.21

2.09

m

2.99

2.82

0

y2/cm

0

0.87

1.57

2.20

2.83

3.61

6

經(jīng)測量m的值是 (保留一位小數(shù)).

2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(xy1),(x,y2),并畫出函數(shù)yspan>1,y2的圖象;

3)結合函數(shù)圖象,解決問題:當△ACP為等腰三角形時,AP的長度約為 cm(保留一位小數(shù)).

【答案】12.7(±0.2);(2)詳見解析;(32.34.2 (±0.2)

【解析】

1)通過測量即可得出答案;

2)描點、連線即可畫出函數(shù)圖象;

3)分AC=PCAP=PC兩種情況結合圖象解答即可.

解:(1)經(jīng)測量:m=2.7(±0.2);

2)描點、連線后,畫出圖象如圖;

3)當AC=PC時,即,從圖象可以看出:x=4.2 (±0.2)

AP=PC時,畫出函數(shù)y=x的圖象,圖象與的交點處x的值約為2.3(±0.2);

故答案為:2.34.2 (±0.2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFGH的一邊FGBC上,頂點EH分別在AB、AC上,已知BC40cm,AD30cm.

1)求證:AEH∽△ABC;

2)求這個正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM30°,∠OCD45°.

1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MNCD相交于點E,求∠CEN的度數(shù);

2)將圖①中的三角板OMN繞點O按逆時針方向旋轉,使∠BON30°,如圖③,MNCD相交于點E,求∠CEN的度數(shù);

3)將圖①中的三角板OMN繞點O按每秒30°的速度按逆時針方向旋轉一周,在旋轉的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射線QN與等邊ABC的兩邊ABBC分別交于點M,N,且ACQN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心,cm為半徑的圓與ABC的邊相切(切點在邊上),請寫出t可取的一切值 (單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸的一個交點為A(-1,0),對稱軸為直線x =1,與y的交點B在(02)和(0,3)之間(包括這兩點),下列四個結論中,①當x3時,y0;② 3a+b0;③-1≤a ;④4acb2 8a;所有正確結論的序號是_______________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知鈍角三角形ABC,將ABC繞點A按逆時針方向旋轉110°得到AB′C′,連接BB′,若AC′BB′,則∠CAB′的度數(shù)為( )

A. 55°B. 65°C. 85°D. 75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線BC是反比例函數(shù)y4≤x≤6)的一部分,其中B41m),C6,﹣m),拋物線y=﹣x2+2bx的頂點記作A

1)求k的值.

2)判斷點A是否可與點B重合;

3)若拋物線與BC有交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,、、分別是、、的中點,要使四邊形是菱形,則四邊形只需要滿足的一個條件是(

A.B.四邊形是菱形C.對角線D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx的部分對應值如表:

x

1

0

2

3

4

y

5

0

4

3

0

下列結論:拋物線的開口向上;②拋物線的對稱軸為直線x=2;③0<x<4,y>0;④拋物線與x軸的兩個交點間的距離是4;⑤A(,2),B(,3)是拋物線上兩點,,其中正確的個數(shù)是 ( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習冊答案