分析 由條件可證得△ABN∽△BNM∽△ABM,且可求得線段AM的長度,利用對應(yīng)線段的比相等可求得AN和MN,進(jìn)一步可得到$\frac{AO}{AM}$=$\frac{AN}{AC}$,且∠CAM=∠NAO,可證得△AON∽△AMC,利用相似三角形的性質(zhì)可求得ON.
解答 解:∵AB=4,BM=2,
∴AM=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
∵∠ABM=90°,BN⊥AM,
∴△ABN∽△BNM∽△AMB,
∴AB2=AN×AM,BM2=MN×AM,
∴AN=$\frac{8\sqrt{5}}{5}$,MN=$\frac{2\sqrt{5}}{5}$,
∵AB=4,CD=4,
∴AC=4$\sqrt{2}$,
∴AO=2$\sqrt{2}$,
∵$\frac{AO}{AM}$=$\frac{AN}{AC}$=$\frac{\sqrt{10}}{5}$,且∠CAM=∠NAO
∴△AON∽△AMC,
∴$\frac{ON}{MC}$=$\frac{AO}{AM}$,即$\frac{ON}{6}$=$\frac{2\sqrt{2}}{2\sqrt{5}}$,
∴ON=$\frac{\sqrt{10}}{5}$.
故答案為:$\frac{\sqrt{10}}{5}$.
點(diǎn)評 本題主要考查三角形相似的判定和性質(zhì),由相似得到線段的比相等再證明相似是本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,-2) | B. | (-3,2) | C. | (3,2) | D. | (-3,-2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | +2℃ | B. | 1℃ | C. | -2℃ | D. | -1℃ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com