【題目】如圖,AB∥CD,直線EF分別與AB、CD交于點G,H,GM⊥EF,HN⊥EF,交AB于點N,∠1=50°.
(1)求∠2的度數;
(2)試說明HN∥GM;
(3)∠HNG= .
【答案】(1)50°;(2)見解析(3)40°.
【解析】
試題(1)先由AB∥CD得到∠EHD=∠1=50°,然后再根據對頂角相等可得到∠2的度數;
(2)由GM⊥EF,HN⊥EF得到∠MGH=90°,∠NHF=90°,然后可證HN∥GM;
(3)先由HN⊥EF得到∠NHG=90°,然后可得∠NGH=∠1=50°,然后根據互余可計算出∠HNG=40°.
試題解析:(1)∵AB∥CD,
∴∠EHD=∠1=50°,
∴∠2=∠EHD=50°;
(2)∵GM⊥EF,HN⊥EF,
∴∠MGH=90°,∠NHF=90°,
∴∠MGH=∠NHF,
∴HN∥GM;
(3)∵HN⊥EF,
∴∠NHG=90°
∵∠NGH=∠1=50°,
∴∠HNG=90°﹣50°=40°.
故答案為40°.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=1,BC=2,CD平分∠ACB交邊AB與點D,P是射線CD上一點,聯結AP.
(1)求線段CD的長;
(2)當點P在CD的延長線上,且∠PAB=45°時,求CP的長;
(3)記點M為邊AB的中點,聯結CM、PM,若△CMP是等腰三角形,求CP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示雙曲線y= 與 分別位于第三象限和第二象限,A是y軸上任意一點,B是上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內,y隨x的增大而減小;②若點B的橫坐標為-3,則C點的坐標為(-3, );③k=4;④△ABC的面積為定值7.正確的有( )
A. I個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經過點A(﹣1,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數;
(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,一次函數y=kx+b的圖象與反比例函數y= 的圖象交A(1,4),B(-4,c)兩點,
(1)求反比例函數及一次函數的解析式;
(2)點P是x軸上一動點,使|PA-PB|的值最大,求點P的坐標及△PAB的面積;
(3)如圖2所示,點M、N都在直線AB上,過M、N分別作y軸的平行線交雙曲線于E、F,設M、N的橫坐標分別為m、n,且, ,請?zhí)骄?/span>,當m、n滿足什么關系時,ME=NE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形 ABCD 中, ABC 90, CD AD , BE AD , AD2 CD2 2 AB2,若四邊形 ABCD 的面積為18,則 BE 的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長為2019個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A﹣B﹣C﹣D﹣A的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com