【題目】如圖,正方形網格中,小正方形的邊長為1.△ABC的頂點都在格點上.
(1)把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1逆時針旋轉90°,在網格中畫出旋轉后的△A1B2C2;
(3)在(2)的條件下,直接寫出點C1至點C2的經過的路徑長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過點C做⊙O 的切線,與AE的延長線交于點D,且AD⊥CD.
(1)求證:AC平分∠DAB;
(2)若AB=10,CD=4,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點E是邊CD上一點,且BC=EC,CF⊥BE交AB于點F,P是EB延長線上一點,下列結論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正確結論的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)方法選擇:如圖①,四邊形ABCD是⊙O的內接四邊形,連接AC,BD,AB=BC=AC.求證:BD=AD+CD.
小穎認為可用截長法證明:在DB上截取DM=AD,連接AM…
小軍認為可用補短法證明:延長CD至點N,使得DN=AD…
請你選擇一種方法證明.
(2)類比探究:(探究1)如圖②,四邊形ABCD是⊙O的內接四邊形,連接AC,BD,BC是⊙O的直徑,AB=AC.試用等式表示線段AD,BD,CD之間的數(shù)量關系,井證明你的結論.
(探究2)如圖③,四邊形ABCD是⊙O的內接四邊形,連接AC,BD.若BC是⊙O的直徑,∠ABC=30°,則線段AD,BD,CD之間的等量關系式是 .
(3)拓展猜想:如圖④,四邊形ABCD是⊙O的內接四邊形,連接AC,BD.若BC是⊙O的直徑,BC:AC:AB=a:b:c,則線段AD,BD,CD之間的等量關系式是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面的統(tǒng)計圖反映了我國出租車(巡游出租車和網約出租車)客運量結構變化.
(以上數(shù)據(jù)摘自《中國共享經濟發(fā)展年度報告(2019)》)
根據(jù)統(tǒng)計圖提供的信息,下列推斷合理的是( )
A.2018年與2017年相比,我國網約出租車客運量增加了20%以上
B.2018年,我國巡游出租車客運量占出租車客運總量的比例不足60%
C.2015年至2018年,我國出租車客運的總量一直未發(fā)生變化
D.2015年至2018年,我國巡游出租車客運量占出租車客運總量的比例逐年增加
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,連接CD,過點C作CE⊥DB,垂足為E,直徑AB與CE的延長線相交于F點.
(1)求證:CF是⊙O的切線;
(2)當BD=,sinF=時,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正比例函數(shù)y=x的圖象與反比例函數(shù)的圖象有一個交點的縱坐標是2,求:
(1)x=﹣3時反比例函數(shù)的值;
(2)當﹣3<x<﹣1時反比例函數(shù)y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 鄭州某商場在“六一”兒童節(jié)購進一批兒童智力玩具.已知成批購進時單價20元,調查發(fā)現(xiàn):該玩具的月銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關系,下表是月銷售量、銷售單價的幾組對應關系:
月銷售單價x/元 | 30 | 35 | 40 | 45 |
月銷售量y/個 | 230 | 180 | 130 | m |
(1)求y與x的函數(shù)關系式;
(2)根據(jù)以上信息填空:
①m=______;
②當銷售單價x=______元時,月銷售利潤最大,最大利潤是______元;
(3)根據(jù)物價部門規(guī)定,每件玩具售價不能高于40元,若月銷售利潤不低于2520元,試求銷售單價x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com