【題目】我們知道,在平面內,如果一個圖形繞著一個定點旋轉一定的角度后能與自身重合,那么就稱這個圖形是旋轉對稱圖形,轉的這個角稱為這個圖形的一個旋轉角.例如,正方形繞著它的對角線的交點旋轉后能與自身重合所以正方形是旋轉對稱圖形,它有一個旋轉角為.
判斷下列說法是否正確(在相應橫線里填上“對”或“錯”)
①正五邊形是旋轉對稱圖形,它有一個旋轉角為.________
②長方形是旋轉對稱圖形,它有一個旋轉角為.________
填空:下列圖形中時旋轉對稱圖形,且有一個旋轉角為的是________.(寫出所有正確結論的序號)
①正三角形②正方形③正六邊形④正八邊形
寫出兩個多邊形,它們都是旋轉對稱圖形,都有一個旋轉角為,其中一個是軸對稱圖形,但不是中心對稱圖形;另一個既是軸對稱圖形,又是中心對稱圖形.
【答案】(1)對,對;(2)①③;(3).
【解析】
(1)根據題意旋轉角的定義,即可作出判斷;
(2)分別求出幾種圖形的旋轉角,即可得出答案.
(3)將72°當作最小旋轉角,進行計算即可.
(1)①,
∴正五邊形是旋轉對稱圖形,它有一個旋轉角為144°,說法正確;
②=90°,
∴長方形是旋轉對稱圖形,它有一個旋轉角為180°,說法正確;
(2)①正三角形的最小旋轉角為=120°;
②正方形的最小旋轉角為=90°;
③正六邊形的最小旋轉角為=60°;
④正八邊形的最小旋轉角為=45°;
則有一個旋轉角為120°的是①③.
(3)=72°,
則正五邊形是滿足有一個旋轉角為72°,是軸對稱圖形,但不是中心對稱圖形;
正十邊形有一個旋轉角為72°,既是軸對稱圖形,又是中心對稱圖形.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系,
②BC,CD,CF之間的數量關系為;
(2)數學思考
如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;
若不成立,請你寫出正確結論再給予證明;
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,求CF,EG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司實行年工資制,職工的年工資由基礎工資、住房補貼和醫(yī)療費三項組成,具體規(guī)定如下:
項目 | 第一年的工資(萬元) | 一年后的計算方法 |
基礎工資 | 1 | 每年的增長率相同 |
住房補貼 | 0.04 | 每年增加0.04 |
醫(yī)療費 | 0.1384 | 固定不變 |
(1)設基礎工資每年增長率為x,用含x的代數式表示第三年的基礎工資為 萬元;
(2)某人在公司工作了3年,他算了一下這3年拿到的住房補貼和醫(yī)療費正好是這3年基礎工資總額的18 %,問基礎工資每年的增長率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:
根據以上信息,整理分析數據如下:
平均成績/環(huán) | 中位數/環(huán) | 眾數/環(huán) | 方差 | |
甲 | ||||
乙 |
(1)_ ; ; ;
(2)填空:(填“甲”或“乙”),
①從平均數和中位數的角度來比較,成績較好的是 ;
②從平均數和眾數的角度來比較,成績較好的是 ;
③成績相對較穩(wěn)定的是 ;
(3)若環(huán)以上有希望奪冠,選派其中一名參賽,你認為應選 隊員.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(定義學習)
定義:如果四邊形有一組對角為直角,那么我們稱這樣的四邊形為“對直四邊形”
(判斷嘗試)
在①梯形;②矩形:③菱形中,是“對直四邊形”的是哪一個. (填序號)
(操作探究)
在菱形ABCD中,于點E,請在邊AD和CD上各找一點F,使得以點A、E、C、F組成的四邊形為“對直四邊形”,畫出示意圖,并直接寫出EF的長,
(實踐應用)
某加工廠有一批四邊形板材,形狀如圖所示,若AB=3米,AD=1米,
.現根據客戶要求,需將每張四邊形板材進一步分割成兩個等腰三角形板材和一個“對直四邊形"板材,且這兩個等腰三角形的腰長相等,要求材料充分利用無剩余.求分割后得到的等腰三角形的腰長,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點,P是AD上的一個動點,當PC與PE的和最小時,∠CPE的度數是( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四座城市A,B,C,D分別位于一個邊長100km的大正方形的四個頂點,由于各城市之間的商業(yè)往來日益頻繁,于是政府決定修建公路網連接它們,根據實際,公路總長設計得越短越好,公開招標的信息發(fā)布后,一個又一個方案被提交上來,經過初審后,擬從下面四個方案中選定一個再進一步認證,其中符合要求的方案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線(≠0)與軸交于A(-4,0),B(2,0),與軸交與點C(0,2).
(1)求拋物線的解析式;
(2)若點D為該拋物線上的一個動點,且在直線AC上方,當以A,C,D為頂點的三角形面積最大時,求點D的坐標及此時三角形的面積;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com