4.如圖,已知AF=AB,AF⊥AB,AH=AC,AH⊥AC,連接CF,BH交于點D,求證:
(1)CF=BH;
(2)CF⊥BH.

分析 (1)根據(jù)已知條件,結(jié)合三角形全等的條件可得出△HAB≌△CAF,即可解答;
(2)由△HAB≌△CAF得到邊相等,角相等.再求證CF⊥BH.

解答 解:(1)∵AF⊥AB,AH⊥AC,
∴∠HAC=∠BAF=90°,
∴∠HAC+∠BAC=∠BAF+∠BAC,
即∠BAH=∠CAF.
在△HAB和△CAF中,
$\left\{\begin{array}{l}{AB=AF}\\{∠BAH=∠CAF}\\{AH=AC}\end{array}\right.$
∴△HAB≌△CAF.
∴BH=CF
(2)∵△HAB≌△CAF.
∴∠ABH=∠F,
在△AFD和△BOD中,
∠ABH=∠F,∠BED=∠FEA,
∴∠DOB=∠FAD,
即HB⊥CF.

點評 本題考查了三角形全等的判定和性質(zhì);題目較復(fù)雜,信息量較大,在解答時要注意仔細讀題找出兩三角形全等的條件即可解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,在△ABC中,∠ABC和∠ACB的平分線交于點O,過點O作EF∥BC,交AB于E,交AC于F.求證:EF=BE+CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知:如圖,B、A、C三點共線,并且Rt△ABD≌Rt△ECA,M是DE的中點.
(1)判斷△ADE的形狀并證明;
(2)判斷線段AM與線段DE的關(guān)系并證明;
(3)判斷△MBC的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.長為5個單位長度的木條放在數(shù)軸上,最多能覆蓋6個表示整數(shù)的點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.計算
(1)-20-(-15)-|-5|
(2)1$\frac{1}{2}$×$\frac{4}{7}$-(-$\frac{4}{7}$)×$2\frac{1}{2}$-(-4)2÷7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖①是一個正五邊形,分別連接這個正五邊形各邊的中點得到圖②,再分別連接圖②小正五邊形各邊的中點得到圖③…

(1)填寫下表:
圖形標(biāo)號123
正五邊形個數(shù)123
三角形個數(shù)0510
(2)按上面方法繼續(xù)連下去,第n個圖中有多少個三角形?
(3)能否分出2016個三角形?試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.計算:
(1)-$\frac{2}{5}+$(-$\frac{5}{8}-\frac{1}{6}+\frac{7}{12}$)×24;          
(2)17-8÷(-2)2+4×(-3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.我市某工藝廠設(shè)計了一款工藝品投放市場進行試銷,通過試銷得出該工藝品每天獲得的利潤是W(元)與銷售單價x(元)之間的函數(shù)表達式為W=-10(x-40)2+9000,物價部門規(guī)定該工藝品的銷售單價最高不超過35元,則銷售單價定為35元時,工藝廠試銷該工藝品每天獲得的利潤最大,最大利潤為8750元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,在?ABCD中,點E在邊AD上,AE:AD=2:3,BE與AC交于點F.若AC=15,則AF的長為6.

查看答案和解析>>

同步練習(xí)冊答案