【題目】已知線段AD=10 cm,B、C都是線段AD上的點,AC=7 cm,BD=4 cm,E、F分別是AB、CD的中點,求線段EF的長.

【答案】 cm

【解析】

先結(jié)合已知條件畫出圖形,根據(jù)BC=AC+BD-AD求出BC的長,再根據(jù)AB=AC-BC,AB=AC-BC求出ABCD的長,根據(jù)E、F分別是線段AB、CD的中點求出BECF,即可得EF的長.

∵AD=10cm,AC=7cm,BD=4cm,
∴BC=AC+BD-AD
=7cm+4cm-10cm=1cm,
∴AB=AC-BC=7cm-1cm=6cm,CD=BD-BC =4cm-1cm=3cm,
∵E、F分別是線段AB、CD的中點,
∴BE=AB=3cm,CF=CD=cm,
∴EF=EB+BC+CF=3+1+(cm).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結(jié)論中,正確的一項是(

A.abc<0
B.2a+b<0
C.a﹣b+c<0
D.4ac﹣b2<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E是平行四邊形ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F.

(1)求證:△ABE≌△FCE;
(2)連接AC、BF,若AE= BC,求證:四邊形ABFC為矩形;
(3)在(2)條件下,直接寫出當△ABC再滿足時,四邊形ABFC為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與解方程.
(1)計算: ﹣(2﹣ 0+( 2
(2)解分式方程: + =4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標;
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標;
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標平面內(nèi)的點,且N點的橫坐標為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長;

(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,ED=3BE,點P、Q分別在BD,AD上,則AP+PQ的最小值為(

A.2
B.
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O(0,0),A(0,﹣6),B(8,0)三點在⊙P上.

(1)求圓的半徑及圓心P的坐標;
(2)M為劣弧 的中點,求證:AM是∠OAB的平分線;
(3)連接BM并延長交y軸于點N,求N,M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在國務(wù)院辦公廳發(fā)布《中國足球發(fā)展改革總體方案》之后,某校為了調(diào)查本校學生對足球知識的了解程度,隨機抽取了部分學生進行一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖的統(tǒng)計圖,請根據(jù)圖中所給的信息,解答下列問題:

(1)本次接受問卷調(diào)查的學生總?cè)藬?shù)是;
(2)扇形統(tǒng)計圖中,“了解”所對應(yīng)扇形的圓心角的度數(shù)為 , m的值為;
(3)若該校共有學生1500名,請根據(jù)上述調(diào)查結(jié)果估算該校學生對足球的了解程度為“基本了解”的人數(shù).

查看答案和解析>>

同步練習冊答案