精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將半徑為4,圓心角為90°的扇形BACA點逆時針旋轉60°,點B、C的對應點分別為點D、E且點D剛好在上,則陰影部分的面積為_____

【答案】+

【解析】

直接利用旋轉的性質結合扇形面積求法以及等邊三角形的判定與性質得出S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,進而得出答案.

連接BD,過點BBNAD于點N,

∵將半徑為2,圓心角為90°的扇形BACA點逆時針旋轉60°,

∴∠BAD=60°,AB=AD,

∴△ABD是等邊三角形,

∴∠ABD=60°,

則∠ABN=30°,

AN=1,BN=,

S陰影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD

﹣(×2×

=π﹣(π﹣

+

故答案為: +

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】勝利中學在一次健康知識競賽活動中,抽取了一部分學生的測試成績(成績均為整數),整理后繪制成如圖所示的頻數直方圖,根據圖示信息,下列描述不正確的是(  )

A. 抽查了50名學生

B. 成績在60.570.5分范圍的頻數為2

C. 成績在70.580.5分范圍的頻數比成績在60.570.5分范圍的頻數多1

D. 成績在70.580.5分范圍的頻率為0.8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C,頂點為D.

(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設點P的橫坐標為m;
①用含m的代數式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設△BCF的面積為S,求S與m的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】每年11月的最后一個星期四是感恩節(jié),小龍調查了初三年級部分同學在感恩節(jié)當天將以何種方式表達感謝幫助過自己的人.他將調查結果分為如下四類:A類﹣﹣當面致謝;B類﹣﹣打電話;C類﹣﹣發(fā)短信息或微信;D類﹣﹣寫書信.他將調查結果繪制成如圖不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
請你根據圖中提供的信息完成下列各題:

(1)補全條形統(tǒng)計圖;
(2)在A類的同學中,有3人來自同一班級,其中有1人學過主持.現(xiàn)準備從他們3人中隨機抽出兩位同學主持感恩節(jié)主題班會課,請你用樹狀圖或表格求出抽出的兩人都沒有學過主持的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反映了小明從家里到超市的時間與距離之間關系的一幅圖。

1)圖中自變量和因變量各是什么?

2)小明到達超市用了多少時間?超市離家多遠?

3)分別求小明從家里到超市時的平均速度是多少?返回時的平均速度是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,線段AC=6,線段BC=15,點MAC的中點,在CB上取一點N,使得CNNB=12,求MN的長.

解:∵MAC的中點,AC=6

MC=______(填線段名稱)=______,

又因為CNNB=12BC=15,

CN=______(填線段名稱)=______

MN=______(填線段名稱)+______(填線段名稱)=8

MN的長為8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點B的坐標為(3,0),將直線y=kx沿y軸向上平移3個單位長度后恰好經過B,C兩點.

(1)求直線BC及拋物線的解析式;
(2)設拋物線的頂點為D,點P在拋物線的對稱軸上,且∠APD=∠ACB,求點P的坐標;
(3)連接CD,求∠OCA與∠OCD兩角和的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知三角形的兩邊分別是2cm和3cm,現(xiàn)從長度分別為1cm、2cm、3cm、4cm、5cm、6cm六根小木棒中隨機抽一根,抽到的木棒能作為該三角形第三邊的概率是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形紙片ABC中,點D在邊AB(不包含端點A、B)上運動,連接CD,將ADC對折,點A落在直線CD上的點A′處,得到折痕DE;將BDC對折,點B落在直線CD上的點B′處,得到折痕DF

1)若ADC=80°,求BDF的度數;

2)試問EDF的大小是否會隨著點D的運動而變化?若不變,求出EDF的大;若變化,請說明理由.

查看答案和解析>>

同步練習冊答案
<label id="dhfzr"></label>