【題目】已知數(shù)軸上的A、B兩點所對應(yīng)的數(shù)分別為abP為數(shù)軸上的一個動點.其中a,b滿足(a12+|b+5|0,

1)若點PAB的中點,求P點對應(yīng)的數(shù).

2)若點PA點出發(fā),以每秒2個單位的速度向左運動,t秒后,求P點所對應(yīng)的數(shù)以及PB的距離.

3)若數(shù)軸上點M、N所對應(yīng)的數(shù)為m、n,其中APM的中點,BPN的中點,無論點P在何處,是否為一個定值?若是,求出定值:若不是,請說明理由.

【答案】1-2;(2P點表示12t, PB|62t|;(3是一個定值,定值為2

【解析】

1)先確定a、b定值,由數(shù)軸上數(shù)中點的特點,求出P點的對應(yīng)數(shù);

2)由題意可知,Pt秒后運動距離2tP點表示12t,即可求PB;

3)設(shè)P點表示的數(shù)為x,由兩個中點,可知x2mx=﹣10n,求得mn12,即MN|mn|12,所以2

解:(1)由(a12+|b+5|0,

a1b=﹣5

AB6,

PAB的中點,

P點對應(yīng)為﹣2

2Pt秒后運動距離2t,

P點表示12t

PB|12t+5||62t|;

3)設(shè)P點表示的數(shù)為x,

APM的中點,

x2m,

BPN的中點,

x=﹣10n,

∴2m=﹣10n

mn12,

MN|mn|12,

2

是一個定值,定值為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】C在直線AB上,且線段AB16,若ABBC83,EAC的中點,DAB的中點,則線段DE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達燈塔P南偏西45°方向上的B處,若輪船繼續(xù)沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知線段 AB12cm,點 C AB 上的一個動點,點 D,E 分別是 AC BC的中點.

1)若 AC4cm,求 DE 的長.

2)若 ACacm(不超過 12cm),求 DE 的長.

3)知識遷移:如圖②,已知∠AOB120°,過角的內(nèi)部任意一點 C 畫射線OC,若OD,OE 分別平分∠AOC 和∠BOC,求∠DOE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,小慧同學(xué)利用直尺和規(guī)進行了如下操作:①連接AC,分別以點AC為圓心,以大于AC的長為半徑畫弧,兩弧相交于點P、Q;②作直線PQ,分別交BC、ACAD于點E、OF,連接AE、CF.根據(jù)操作結(jié)果,解答下列問題:

1)線段AFCF的數(shù)量關(guān)系是 .

2)若∠BAD=120°,AE平分∠BAD,AB=8,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對于一個數(shù)x,我們把[x]稱作x的相伴數(shù);若x0,則[x]x1;若x0,則[x]x+1.例:[0.5]=﹣0.5

1)求[][1]的值;

2)當(dāng)a0b0時,有[a][b],試求代數(shù)式(ba33a+3b的值;

3)解方程:[x]+[x+2]1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉疊放在一起,若重疊都分構(gòu)成的四邊形ABCD中,AB=3,BD=4.則AC的長為_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①先化簡,然后從-2≤a<3的范圍內(nèi)選取一個你認(rèn)為合適的整數(shù)作為a的值代入求值.

②解分式方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩名選手參加長跑比賽,乙從起點出發(fā)勻速跑到終點,甲先快后慢,半個小時后找到適合自己的速度,勻速跑到終點,他們所跑的路程y(單位:km)隨時間x(單位:h)變化的圖象,如圖所示,則下列結(jié)論錯誤的是( 。

A. 在起跑后1h內(nèi),甲在乙的前面

B. 跑到1h時甲乙的路程都為10km

C. 甲在第1.5時的路程為11km

D. 乙在第2h時的路程為20km

查看答案和解析>>

同步練習(xí)冊答案