精英家教網 > 初中數學 > 題目詳情
3.已知x=$\sqrt{5}$-2,求x2+4x-10的值.

分析 把x2+4x-10化為(x+2)2-14,再把x=$\sqrt{5}$-2,代入進行計算即可.

解答 解:x2+4x-10=(x+2)2-14,
=($\sqrt{5}$-2+2)2-14
=5-14
=-9.

點評 本題考查了二次根式的化簡求值,掌握配方法是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

13.已知代數式M=(a+b+1)x3+(2a-b)x2+(a+3b)x-5是關于x的二次多項式.
(1)若關于y的方程3(a+b)y=ky-8的解是y=4,求k的值;
(2)若當x=-1時,代數式M的值為-21,求代數式4a-b的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

14.①-150+250
②6$\frac{3}{5}$+2-$\frac{1}{2}$-6.6
③(-$\frac{5}{12}$)÷$\frac{15}{4}$×(-1.5)
④6-(-12)÷(-3)
⑤($\frac{1}{4}$+$\frac{5}{6}$-$\frac{1}{2}$)×12
⑥(-1)2008×3+(-2)3÷4
⑦-22×(-$\frac{1}{2}$)3+3-|-4|+5
⑧(-$\frac{1}{6}$+$\frac{3}{4}$-$\frac{5}{9}$-$\frac{1}{12}$)×(-36)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

11.解方程:
(1)$2x-\frac{5}{2}x=6-5$
(2)-$\frac{5}{2}$y+$\frac{3}{2}$y=(-1)3-(-4)

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

18.按一定規(guī)律排列的一列數為$-\frac{1}{2}$,2,$-\frac{9}{2}$,8,$-\frac{25}{2}$,18…,則第8個數為32,第n個數為(-1)n×$\frac{{n}^{2}}{2}$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

8.合并同類項:
(1)3a2+2a-2-a2-5a+7         
(2)(7y-3z)-(8y-5z)

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

15.計算:$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}…+\frac{1}{2014×2015}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

12.如圖,D、E分別是△ABC的邊AB、AC上的點,DE=EF,AE=EC,DE∥
BC,求證:
(1)四邊形ADCF是平行四邊形;
(2)四邊形BCFD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

13.有下列結論:①sin230°+cos230°=sin260°;②sin45°=cos45°;③tan25°•tan65°=1;④若∠A為銳角,且sinA=cos28°,則∠A=62°.其中正確的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案