分析 (1)如圖①,P為⊙B的切點(diǎn),連接BP并延長(zhǎng),作OL⊥BP于點(diǎn)L,交GH于點(diǎn)M,求出ML,OM,根據(jù)$\frac{BH}{OH}$=$\frac{ML}{OM}$求解;
(2)如圖②,作HD⊥OB,P為切點(diǎn),連接BP,PH的延長(zhǎng)線交BD延長(zhǎng)線于點(diǎn)L,由△LDH∽△LPB,得出$\frac{DL}{PL}$=$\frac{DH}{PB}$,再根據(jù)30°的直角三角形得出線段的關(guān)系,得到DH和r的關(guān)系式,根據(jù)0≤d≤3的限制條件,列不等式組求范圍.
解答 解:(1)如圖①,P為⊙B的切點(diǎn),連接BP并延長(zhǎng),作OL⊥BP于點(diǎn)L,交GH于點(diǎn)M,
∴∠BPH=∠BLO=90°,
∵AO∥GH,
∴BL∥AO∥GH,
∵∠AOB=120°,
∴∠OBL=60°,
在RT△BPH中,HP=$\sqrt{3}$BP=$\sqrt{3}$r,
∴ML=HP=$\sqrt{3}$r,
OM=r,
∵BL∥GH,
∴$\frac{BH}{OH}$=$\frac{ML}{OM}$=$\frac{\sqrt{3}r}{r}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
(2)如圖②,作HD⊥OB,P為切點(diǎn),連接BP,PH的延長(zhǎng)線交BD延長(zhǎng)線于點(diǎn)L,
∴∠LDH=∠LPB=90°,
∴△LDH∽△LPB,
∴$\frac{DL}{PL}$=$\frac{DH}{PB}$,
∵AO∥PB,∠AOD=120°,
∴∠B=60°,
∴∠BLP=30°,
∴DL=$\sqrt{3}$DH,LH=2DH,
∵HE=(8$\sqrt{3}$+2)cm
∴HP=8$\sqrt{3}$+2-r,
PL=HP+LH=8$\sqrt{3}$+2-r+2DH,
∴$\frac{\sqrt{3}DH}{2DH+8\sqrt{3}+2-r}$=$\frac{DH}{r}$,解得DH=$\frac{\sqrt{3}+1}{2}$r-4$\sqrt{3}$-1,
∵0cm≤DH≤3cm,
∴0≤$\frac{\sqrt{3}+1}{2}$r-4$\sqrt{3}$-1≤3,
解得:(11-3$\sqrt{3}$)cm≤r≤8cm.
故答案為:(11-3$\sqrt{3}$)cm≤r≤8cm.
點(diǎn)評(píng) 本題主要考查了圓的綜合應(yīng)用,解決本題的關(guān)鍵是作出輔助線,運(yùn)用含30°的直角三角形的性質(zhì)得出線段的關(guān)系,同時(shí)涉及切線的性質(zhì),平行線分線段成比例的性質(zhì)的知識(shí)點(diǎn),綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 65° | B. | 50° | C. | 40° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com