分析 作PH⊥C1D1,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BC=BC1=4,由四邊形BPHC1為矩形得到PH=BC1,則BC=PH,于是可根據(jù)“AAS”證明△BPC≌△PQH,得到PQ=PB,由于DP:DQ=1:2,所以DP=BP=PQ,設(shè)DP=x,則BP=x,PC=DC-DP=8-x,然后在Rt△BCP中根據(jù)勾股定理得到(8-x)2+42=x2,再解方程求出x即可.
解答 解:作PH⊥C1D1,如圖,
∵矩形ABCD繞著點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)得到矩形A1B1C1D1,
∴BC=BC1=4,
易得四邊形BPHC1為矩形,
∴PH=BC1,
∴BC=PH,
∵C1D1∥A1B,
∴∠BPC=∠PQH,
在△BPC和△PQH中,
$\left\{\begin{array}{l}{∠BCP=∠PHQ}\\{∠BPC=∠PQH}\\{BC=PH}\end{array}\right.$,
∴△BPC≌△PQH,
∴PQ=PB,
∵DP:DQ=1:2,
∴DP=BP=PQ,
設(shè)DP=x,則BP=x,PC=DC-DP=8-x,
在Rt△BCP中,(8-x)2+42=x2,解得x=5,
即DP的長(zhǎng)為5.
故答案為5.
點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.解決本題的關(guān)鍵是證明PD=PB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com