【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相較于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③DP2=PH·PC;④若AB=2,則S△BPD=;其中正確的是( )
A.①②③④B.②③C.①②④D.①③④
【答案】A
【解析】
由等邊三角形的性質和正方形的性質,得到∠ABE=∠DCF=30°,即可判斷①;利用角的和差關系,根據兩角對應相等,得到△DFP∽△BPH,可以判斷②;由相似三角形的性質,得到,即可判斷③;先得到PM和PN的長度,由面積的割補法,即可求出面積,可對④進行判斷;即可得到答案.
解:∵△BPC是等邊三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正確;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正確;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PHPC,故③正確;
如圖,過P作PM⊥CD,PN⊥BC,
∵正方形的邊長AB=2,△BPC為正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=2,
∴∠PCD=30°,
∴PN=PBsin60°=2×=,PM=PCsin30°=1,
∵S△BPD=S四邊形PBCD-S△BCD=S△PBC+S△PDC-S△BCD
∴;故④正確;
∴正確的結論有:①②③④;
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中是直徑,點是上一點,點是的中點,過點作的切線,與、的延長線分別交于點、,連接.
(1)求證:.
(2)已知的半徑為2,當為何值時,,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,M,N分別為銳角∠AOB的邊OA,OB上的點,ON=6,把△OMN沿MN折疊,點O落在點C處,MC與OB交于點P,若MN=MP=5,則PN=( )
A.2B.3C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0),
(1)求m的值及拋物線的頂點坐標.
(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形中,,,點在邊上,且.
探究:如圖①,點在矩形的邊上,連結,過點作,交邊于點.求證:.
應用:如圖②,若圖①的交邊于點.其它條件不變,連結,則的值為 ,若的面積是.則的長為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)九年級數(shù)學興趣小組經過市場調查,得到某種運動服每月的銷量與售價的相關信息如下表:
售價(元/件) | 100 | 110 | 120 | 130 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運動服的進價為每件60元,設售價為元.
(1)請用含x的式子表示:①銷售該運動服每件的利潤是 元;②月銷量是 件;(直接寫出結果)
(2)設銷售該運動服的月利潤為元,那么售價為多少時,當月的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
問題情境
在綜合實踐課上,老師讓同學們探究“平面直角坐標系中的旋轉問題”.如圖,在平面直角坐標系中,四邊形是矩形,點,點,點.
操作發(fā)現(xiàn)
以點為中心,順時針旋轉矩形,得到矩形,點,,的對應點分別為,,.
(1)如圖①,當點落在邊上時,求點的坐標;
繼續(xù)探究
(2)如圖②,當點落在線段上時,與交于點.
①求證;
②求點的坐標.
拓展探究
(3)如圖①,點是軸上任意一點,點是平面內任意一點,是否存在點使以、、、為頂點的四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人輪流在黑板上寫下不超過 的正整數(shù)(每次只能寫一個數(shù)),規(guī)定禁止在黑板上寫已經寫過的數(shù)的約數(shù),最后不能寫的為失敗者,如果甲寫第一個,那么,甲寫數(shù)字( )時有必勝的策略.
A. 10 B. 9 C. 8D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一條公路旁依次有,,三個村莊,甲乙兩人騎自行車分別從村、村同時出發(fā)前往村,甲乙之間的距離與騎行時間之間的函數(shù)關系如圖所示,下列結論:
①,兩村相距; ②出發(fā)后兩人相遇;
③甲每小時比乙多騎行; ④相遇后,乙又騎行了時兩人相距.
其中正確的有_____________________.(填序號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com