分析 根據(jù)三角形的內(nèi)角和定理,可求得∠BAC的度數(shù),由AE是∠BAC的平分線,可得∠EAC的度數(shù);在直角△ADC中,可求出∠DAC的度數(shù),所以∠DAE=∠EAC-∠DAC,即可得出.
解答 解:∵△ABC中,∠B=40°,∠C=62°,
∴∠BAC=180°-∠B-∠C
=180°-40°-62°
=78°,
∵AE是∠BAC的平分線,
∴∠EAC=$\frac{1}{2}$∠BAC=39°,
∵AD是BC邊上的高,
∴在直角△ADC中,
∠DAC=90°-∠C=90°-62°=28°,
∴∠DAE=∠EAC-∠DAC=39°-28°=11°,
故答案為:11°
點評 本題主要考查了三角形的內(nèi)角和定理和三角形的高、角平分線的性質(zhì),學生應熟練掌握三角形的高、中線和角平分線這些基本知識,能靈活運用解決問題.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | ∠ACD=119°30′ | B. | ∠ACD=∠BCE | C. | ∠ACE=150°30′ | D. | ∠ACE-∠BCD=120° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com