【題目】如圖,在△ABC中,∠ACB90°,ACBC,點(diǎn)EBC上一點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)MAE上一點(diǎn)(不與點(diǎn)A,E重合),連接并延長CMAB于點(diǎn)G,將線段CM繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°,得到線段CN,射線BN分別交AE的延長線和GC的延長線于D,F

1)求證:△ACM≌△BCN;

2)求∠BDA的度數(shù);

3)若∠EAC15°,∠ACM60°,AC+1,求線段AM的長.

【答案】1)見解析;(2)∠BDA90°;(3AM

【解析】

1)根據(jù)題意可知∠ACM=∠BCN,再利用SAS即可證明

2)根據(jù)(1)可求出∠ACE=∠BDE90°,即可解答

3)作MHACACH.在AC上取一點(diǎn),使得AQMQ,設(shè)EHa.可知AQQM2a,QH a,再求出a的值,利用勾股定理即可解答

1)∵∠ACB90°,∠MCN90°,

∴∠ACM=∠BCN

MACNBC

,

∴△MAC≌△NBCSAS

2)∵△MAC≌△NBC,

∴∠NBC=∠MAC

∵∠AEC=∠BED

∴∠ACE=∠BDE90°,

∴∠BDA90°

3)作MHACACH.在AC上取一點(diǎn),使得AQMQ,設(shè)EHa

AQQM,

∴∠QAE=∠AMQ15°

∴∠EQH30°,

AQQM2a,QH a

∵∠ECH60°,

CH a,

AC+1,

2a+a+a+1,

a ,

AM =( + a

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為48的兩個(gè)正方形ABCDCEFG并排放在一起,連結(jié)BD并延長交EG于點(diǎn)T,交FG于點(diǎn)P,則GT的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AD平分∠BACBC于點(diǎn)D,在線段AD上任到一點(diǎn)P(點(diǎn)A除外),過點(diǎn)PEFAB,分別交ACBC于點(diǎn)E、F,作PQAC,交AB于點(diǎn)Q,連接QEAD相交于點(diǎn)G

1)求證:四邊形AQPE是菱形.

2)四邊形EQBF是平行四邊形嗎?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

3)直接寫出P點(diǎn)在EF的何處位置時(shí),菱形AQPE的面積為四邊形EQBF面積的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=x0)的圖象上有一點(diǎn)Am,4),過點(diǎn)AABx軸于點(diǎn)B,將點(diǎn)B向右平移2個(gè)單位長度得到點(diǎn)C,過點(diǎn)Cy軸的平行線交反比例函數(shù)的圖象于點(diǎn)D

(1)點(diǎn)D的橫坐標(biāo)為_____(用戶含m的代數(shù)式表示).

2)當(dāng)CD=時(shí),求反比例函數(shù)所對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接“六一”國際兒童節(jié),某童裝品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種童裝,這兩種童裝的進(jìn)價(jià)和售價(jià)如下表:

價(jià)格

進(jìn)價(jià)(元/件)

m

m+20

售價(jià)(元/件)

150

160

如果用5000元購進(jìn)甲種童裝的數(shù)量與用6000元購進(jìn)乙種童裝的數(shù)量相同.

(1)m的值;

(2)要使購進(jìn)的甲、乙兩種童裝共200件的總利潤(利潤=售價(jià)﹣進(jìn)價(jià))不少于8980元,且甲種童裝少于100件,問該專賣店有哪幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:一個(gè)自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為下滑數(shù)(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個(gè),恰好是下滑數(shù)的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)A,O,B表示的數(shù)分別為6,0,-4,動(dòng)點(diǎn)PA出發(fā),以每秒6個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng).

1)當(dāng)點(diǎn)P到點(diǎn)A的距離與點(diǎn)P到點(diǎn)B的距離相等時(shí),點(diǎn)P在數(shù)軸上表示的數(shù)是 ;

2)另一動(dòng)點(diǎn)RB出發(fā),以每秒4個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、R同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少時(shí)間追上點(diǎn)R?

3)若MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若發(fā)生變化,請(qǐng)你說明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形紙片ABCD的邊長為2,將正方形紙片折疊,使頂點(diǎn)A落在邊CD上的點(diǎn)P處(點(diǎn)PC、D不重合),折痕為EF,折疊后AB邊落在PQ的位置,PQBC交于點(diǎn)G.

(1)觀察操作結(jié)果,找到一個(gè)與EDP相似的三角形,并證明你的結(jié)論;

(2)當(dāng)點(diǎn)P位于CD中點(diǎn)時(shí),你找到的三角形與EDP周長的比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,DAB的中點(diǎn),E,F分別是AC,BC.上的點(diǎn)(點(diǎn)E不與端點(diǎn)AC重合),且連接EF并取EF的中點(diǎn)O,連接DO并延長至點(diǎn)G,使,連接DE,DF,GE,GF

(1)求證:四邊形EDFG是正方形;

(2)直接寫出當(dāng)點(diǎn)E在什么位置時(shí),四邊形EDFG的面積最小?最小值是多少?

查看答案和解析>>

同步練習(xí)冊答案