分析 在Rt△ABF中,由勾股定理可求得BF=6,故此FC=4,設(shè)DE=EF=x,則EC=8-x,在Rt△EFC中由勾股定理得:x2=42+(8-x)2,解得x=5.
解答 解:由翻折的性質(zhì)可知:AF=AD=10、DE=EF.
在Rt△ABF中,BF=$\sqrt{A{F}^{2}-A{B}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6.
∵FC=BC-BF,
∴FC=4.
設(shè)DE=EF=x,則EC=8-x,在Rt△EFC中由勾股定理得:EF2=FC2+EC2,即x2=42+(8-x)2,
解得;x=5.
∴DE=5.
點(diǎn)評(píng) 本題主要考查的是翻折的性質(zhì)、勾股定理的應(yīng)用,依據(jù)勾股定理得到關(guān)于x的方程是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有兩個(gè)不相等的實(shí)數(shù)根 | B. | 有兩個(gè)相等的實(shí)數(shù)根 | ||
C. | 無(wú)實(shí)數(shù)根 | D. | 有無(wú)實(shí)數(shù)根,無(wú)法判斷 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com